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Abstract 

Most psychiatric disorders are moderately to highly heritable. The degree to which 
genetic variation is unique to individual disorders or shared across disorders is unclear. 
To examine shared genetic etiology, we use genome-wide genotype data from the 
Psychiatric Genomics Consortium (PGC) for cases and controls in schizophrenia, bipolar 
disorder, major depressive disorder, autism spectrum disorders (ASD) and attention-
deficit/hyperactivity disorder (ADHD). We apply univariate and bivariate methods for 
the estimation of genetic variation within and covariation between disorders. SNPs 
explained 17–29% of the variance in liability. The genetic correlation calculated using 
common SNPs was high between schizophrenia and bipolar disorder (0.68 ± 0.04 s.e.), 
moderate between schizophrenia and major depressive disorder (0.43 ± 0.06 s.e.), 
bipolar disorder and major depressive disorder (0.47 ± 0.06 s.e.), and ADHD and major 
depressive disorder (0.32 ± 0.07 s.e.), low between schizophrenia and ASD (0.16 ± 0.06 
s.e.) and non-significant for other pairs of disorders as well as between psychiatric 
disorders and the negative control of Crohn’s disease. This empirical evidence of shared 
genetic etiology for psychiatric disorders can inform nosology and encourages the 
investigation of common pathophysiologies for related disorders. 
 

The current classification of psychiatric 
disorders reflects clinical syndromes 
with largely unknown etiology and is 
based on historical descriptions provid-
ed by prominent clinicians over the last 
125 years. Family (including twin and 
adoption) studies provide consistent 
evidence that genetic factors are 
involved in these syndromes1. In princi-
ple, family studies allow quantification 
of the shared genetic etiology of disord-
ers, through the estimation of heritabil-
ity (the proportion of variance in liabil-
ity attributable to additive genetic 
factors), and the genetic correlation 
between them. However, difficulties in 
ascertaining samples of sufficient size 
mean that there are few estimates of 
genetic correlations. Nonetheless, family 
studies suggest correlated familial 
genetic liabilities to bipolar disorder and 
schizophrenia2,3, bipolar disorder and 
major depressive disorder2,3, and ASD 
and ADHD4–6 (Supplementary Table 1). 
Phenotypic and genetic overlap has also 

been suggested for ASD and schizo-
phrenia7–11, ASD and bipolar disorder9, 
bipolar disorder and ADHD12, and major 
depressive disorder and ADHD13. Some 
of these relationships have been 
supported by recent evidence of shared 
molecular risk factors14–16, but the 
extent of these relationships remains 
unclear, given the small proportion of 
risk associated with individually 
identified variants. 

 The genomics era provides new 
opportunities to explore the shared 
genetic etiology of disorders. Genome-
wide association studies (GWAS) assess 
common genetic polymorphisms (for 
example, SNPs) at several hundred 
thousand positions in the genome. The 
experimental paradigm of GWAS involves 
the identification of individual variants 
associated with case-control status17. 
However, these data can also be used to 
estimate the total variance in liability 
explained by SNPs (SNP heritability, 
h2SNP) through the estim-ation of genetic 
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similarities (relation-ships) between 
cases and controls using SNP genotypes18, 

19. The pairwise genetic relationships that 
contribute to the estimate are very small, 
but the large number of pairwise rela-
tionships in a case-control sample 
generates estimates with reasonable 
precision. The h2SNP value is an estimate 
of the total variance in liability to disease 
explained by SNPs together. Genetic 
variation is estimated when case-case 
pairs and control-control pairs are, on 
average, more similar across the genome 
than case-control pairs. The h2SNP value is 
a lower bound for total narrow-sense 
heritabil-ity, as the former cannot include 
contributions from causal variants not 
tagged by the measured SNPs, mostly less 
common and rare causal variants. A 
bivariate extension20 of these genome-
wide methods estimates the genetic 
correlation (rg SNP) explained by SNPs 
between case-control samples collected 
independently for two disorders (Online 
Methods). The correlation is positive 
when the cases of one disorder show 
higher genetic similarity to the cases of 
the other disorder than they do to their 
own controls. A negative correlation is 
possible if the cases of one disorder are 
less similar across the genome to the 
cases of another disorder than they are to 
controls of the other disorder. A genetic 
correlation of zero is estimated if the 
genome-wide relationship between cases 
of one disorder is the same with the cases 
as with the controls of another disorder. 
As a correlation, a high rg SNP value is 
achieved when the covariance term 
between the traits is similar in magnitude 
to the variance terms. Therefore, we also 
report the SNP-based coheritability of 
pairs of disorders, which is the 
covariance between disorders on the 
liability scale and allows comparison of 
the shared liability attributable to SNPs 
on the same scale as h2SNP. Here we apply 
univariate and bivariate methods to the 
five disorders of the PGC - 
schizophrenia21, bipolar disorder22, major 

depressive disorder23, ASD24,25 and 
ADHD26 - analyzed in the PGC Cross-
Disorder Group association study25, 
together with additional ADHD data 
sets27–30 (Table 1). 
RESULTS 
SNP heritabilities for the five disorders 
In our linear mixed model, we estimate 
the variance in case-control status 
explained by SNPs18 (heritability on the 
observed scale; CC estimates in Table 1). 
Cases in case-control samples are highly 
ascertained compared to in the 
population, and, because the cohorts for 
different disorders had different pro-
portions of cases, CC estimates were 
difficult to interpret and compare. For 
this reason, we report h2SNP values on the 
liability scale, in which a linear 
transformation18 is applied based on a 
user-specified estimate of the risk of the 
disorder in the study base population 
(disorder risk, K). For each disorder, we 
considered three values of K (Table 1), 
and we converted h2SNP values to pre-
dicted risk to first-degree relatives (λ1st 

SNP) given K. We benchmarked the λ1st 
SNP risk values to risk to first-degree 
relatives (λ1st), consistent with estimates 
of heritability reported from family 
studies given K. Our estimates of λ1st SNP 
values were robust, and our estimates of 
h2SNP values were reasonably robust, to 
the likely range of K values and show that 
a key part of the heritabilities or familial 
risk estimated from family studies is 
associated with common SNPs. Twice the 
standard error of estimates approximates 
the magnitude of the parameter that is 
possible to detect as being significantly 
different from zero, given the available 
sample sizes31. 
SNP coheritabilities and SNP 
correlations (rg SNP) 
The relationships between disorders 
were expressed as SNP-based coherit-
abilities (Fig. 1). The rg SNP value was high 
between schizophrenia and bipolar 
disorder at 0.68 (0.04 standard error 
(s.e.)), moderate between schizophrenia 
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and major depressive disorder at 0.43 
(0.06 s.e.), bipolar disorder and major 
depressive disorder at 0.47 (0.06 s.e.), 
and ADHD and major depressive disorder 
at 0.32 (0.07 s.e.), low between 
schizophrenia and ASD at 0.16 (0.06 s.e.) 
and non-significant for other pairs of 
disorders (Supplementary Table 1). The 
rg SNP value for correlation is expected to 
be equal to the rg value from family 
studies only if genetic correlation is the 
same across the allelic frequency 
spectrum and if the linkage disequilib-
rium (LD) between genotyped and causal 
variants is similar for both disorders. The 
sample size for ASD was the smallest but 
still could detect correlations of >|0.18| 
different from zero in bivariate analyses 
with all other disorders. 

 Our results provide empirical evid-
ence that schizophrenia, bipolar disord-
er and major depressive disorder have 
shared genetic etiology. Because some 
schizophrenia and bipolar disorder 
cohorts were collected in the same clin-
ical environments, we investigated the 
possible impact of the non-independent 

collection of schizophrenia and bipolar 
disorder samples sets but found no 
significant change in the estimates 
related to this (Supplementary Table 
2). The correlation between schizo-
phrenia and ASD was significant but 
small (0.16, 0.06 s.e.; P = 0.0071). In 
general, our analyses suggested that, 
whereas common genetic variants con-
tribute to both childhood-onset 
disorders (ASD and ADHD) and disord-
ers usually diagnosed after childhood 
(schizophrenia, bipolar disorder and 
major depressive disorder), the sharing 
of common variants between these 
groups is modest. 
 The pattern of our results (in which 
pairs of disorders demonstrated genetic 
overlap) was consistent with polygenic 
profile score32 results from PGC cross-
disorder analyses25. The profile score 
method uses SNP associations from one 
disorder to construct a linear predictor 
in another disorder. The profile scores 
explained small but significant 
proportions of the variance 25, expressed 

Table 1  

Univariate analyses: sample description, SNP-based heritabilities and recurrence risk to first-degree 
relatives 

     
                                                   
SNPs (imputed) 

Schizophrenia                                                    
915,354 

Bipolar disorder                           
995,971 

Major depressive dis.                            
962,093 

ASD                          
982,100 

ADHD                         
917,066 

Cases 9,087 6,704 9,041 3,303 4,163 
Controls 12,171 9,031 9,381 3,428a 12,040a 

N cohorts 
                                          17                                   11                           9                  8          8 
Primary reference 21 22 23 24,25 26–30 
CC (s.e.) 0.41 (0.015) 0.44 (0.021) 0.18 (0.017) 0.31 (0.046) 0.25 (0.020) 
 
Disorder risk for the study-based population (disorder risk, K)b 

K 0.01 0.01 0.15 0.01 0.05 
h2SNP (s.e.) 0.23 (0.008) 0.25 (0.012) 0.21 (0.021) 0.17 (0.025) 0.28 (0.023) 
λ1st-SNP (s.e) 2.10 (0.05) 2.23 (0.08) 1.27 (0.03) 1.75 (0.14) 1.71 (0.07) 
λ1st 8.8 9.6 1.5 8.7 3.5 
 
Lower bound for disorder risk (K) 
K 0.004 0.007 0.1 0.001 0.03 
h2SNP (s.e.) 0.19 (0.007) 0.23 (0.010) 0.19 (0.018) 0.11 (0.017) 0.24 (0.020) 
λ1st-SNP (s.e) 2.14 (0.06) 2.25 (0.08) 1.31 (0.03) 1.79 (0.15) 1.77 (0.07) 
λ1st 14.4 11.7 1.7 29.4 4.5 
 
Upper bound for disorder risk (K) 
K 0.012 0.015 0.2 0.015 0.08 
h2SNP (s.e.) 0.24 (0.009) 0.27 (0.013) 0.23 (0.023) 0.19 (0.028) 0.32 (0.026) 
λ1st-SNP (s.e) 2.10 (0.05) 2.20 (0.07) 1.24 (0.02) 1.74 (0.13) 1.65 (0.06) 
λ1st 8.0 7.7 1.4 7.0 2.8 
 
Heritability estimated from twin/family studies61 

h2 0.81 0.75 0.37 0.80 0.75 

CC is the SNP-based heritability estimated on case-control scale. h 2SNP is the SNP-based heritability on liability scale, given assumed K. All 
estimates of h 2SNP  are highly significantly different from zero. λ  1st-SNP is the recurrence risk to first-degree relatives calculated from h 2SNP  and K. 
λ1st is the recurrence risk to first-degree relatives calculated from h2 from twin and/or family studies and K.  

a  Some cohorts include cases and pseudocontrols, where pseudocontrols are the genomic complements of the cases derived from genotyping of 
proband-parent trios.  b  Used in Figures 1 and 3 Supplementary  
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Figure 1 Evidence for genome-wide pleiotropy 
between psychiatric disorders. Proportion of variance 
in liability (SNP-based heritability) and proportion of 
covariance in liability between disorder (SNP-based 
coheritability) for five major psychiatric disorders. 
The 95% error bars represent the estimates ± 1.96 s.e. 
SCZ, schizophrenia; MDD, major depressive disorder; 
BPD, bipolar disorder. 
 

as Nagelkerke’s R2 (maximum of 2.5% 
between schizophrenia and bipolar 
disorder). To achieve high R2 values 
requires accurate estimation of the 
effect sizes of individual SNPs and SNPs 
to estimate genome-wide similar-ities 
between pairs of individuals, resulting in 
unbiased estimates of the relationships 
between disorders, with larger sample 
sizes generating smaller stand-ard 
errors for the estimates. Our estim-ates 
were on the liability scale, allowing 
direct comparison to genetic parameters 
estimated in family studies, whereas a 
genetic interpretation of Nagelkerke’s R2 
values is less straightforward33.depends 
on the size of the discovery sample. In 
contrast, our approach uses  

Genomic partitioning of SNP 
heritabilities and coheritabilities 
The heritabilities explained by SNPs can 
be partitioned according to SNP 
annotation by the estimation of genetic 
similarity matrices from multiple, non- 

  

Figure 2 Genomic partitioning of SNP-based 
heritability and SNP-based coheritability by 
annotation. Shown is the proportion of SNPs 
attributable to genes in the CNS+ set (red), the 
proportion of SNP-based heritability attributable to 
SNPs in the CNS+ set (dark green), the proportion of 
SNP-based coheritability attributable to SNPs in the 
CNS+ set (light green) and the proportion of SNP-
based heritability for Crohn’s disease attributed to 
SNPs in the CNS+ set (orange). The 95% error bars 
represent the estimates ± 1.96 s.e. ***P < 1 × 10−5 in a 
test of whether the proportion of heritability 
explained by SNPs was equal to the proportion of SNP 
for the CNS+ set.  
 

overlapping SNP sets. For the five 
disorders and the five disorder pairs 
showing significant SNP correlation, we 
partitioned the h2SNP and SNP-based 
coheritabilities explained by functional 
annotation, allocating SNPs to one of 
three sets: (i) SNPs in genes 
preferentially expressed in the central 
nervous system (CNS+) 34, 35, (ii) SNPs in 
other genes and (iii) SNPs not in genes, 
with genes defined by 50-kb boundaries 
extending from their start and stop 
positions. The SNPs in the CNS+ gene set 
represented 0.20 of the total set, both in 
number and megabases of DNA. 
However, the proportion of the variance 
explained by SNPs attributable to this 
SNP set was significantly greater than 
0.20 for schizophrenia (0.30; P = 7.6 × 
10−8) and bipolar disorder (0.32; P = 5.4 
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× 10−6) and for schizophrenia and 
bipolar disorder coheritability (0.37; P = 
8.5 × 10−8) (Fig. 2 and Supplementary 
Table 3). For other disorders or pairs of 
disorders, the estimates explained by 
CNS+ SNPs did not differ from the values 
expected by chance (Supplementary 
Table 3), although their large standard 
errors suggest that we cannot address 
this question with precision. For data 
from the schizophrenia and bipolar 
disorder pair, we also partitioned the 
heritabilities explained by SNPs by 
minor allele frequency (MAF) 
(Supplementary Table 4) and by 
chromosome (Supplementary Fig. 1). 
The high standard errors on estimates 
limited interpretation, but the results 
are consistent with a polygenic archi-
tecture comprising many common 
variants of small effect dispersed 
throughout the genome. The MAF 
partitioning suggests that a key part of 
the variance explained by SNPs is 
attributable to common causal variants 
(this was investigated in detail for 
schizophrenia35), but the low contrib-
ution to the total variance explained by 
SNPs with MAF of <0.1 reflects, at least 
in part, under-representation of SNPs 
with low MAFs in the analysis 
(minimum MAF = 0.01) relative to those 
present in the genome. 
Within-disorder heterogeneity 
To benchmark the estimates of genetic 
sharing across disorders, we estimated 
sharing between data subsets for the 
same disorder. We split the data for each 
disorder into two or three independent 
sets and estimated h2SNP values for each 
subset and the SNP-based coheritability 
between each pair of subsets within a 
disorder (Fig. 3a and Supplementary 
Table 5). The estimates of hSNP2 from 
the data subsets were typically higher 
than the h2SNP estimate from the 
combined sample; we note that 
published estimates from individual 
cohorts of bipolar disorder18, major 
depressive disorder36 and ASD37 were 

also higher. Because both traits in these 
data subset bivariate analyses are for 
the same disorder, the SNP-based 
coheritability is also an estimate of h2SNP 
for the disorder, but these estimates 
were generally lower than the estimates 
of SNP-based heritability from indi-
vidual data subsets. These results 
generated SNP-based correlations that 
were less than 1, sometimes significant-
ly so (Supplementary Table 5). The 
SNP-based correlation between schizo-
phrenia and bipolar disorder (0.68, 0.04 
s.e.) was of comparable magnitude to 
the SNP-based correlations between 
bipolar disorder data sets (0.63, 0.11 
s.e.; 0.88, 0.09 s.e.; and 0.55, 0.10 s.e.; 
Fig. 3a, b, SNP-based coheritabilities), 
adding further weight to the conclusion 
that schizophrenia and bipolar disorder 
may be part of the same etiological 
spectrum. 
 The estimates of heritability from 
both univariate (Fig. 3a, red and pink 
bars) and bivariate (Fig. 3a, blue bars) 
analyses are more heterogeneous for 
bipolar disorder, major depressive 
disorder and ADHD than they are for 
schizophrenia and ASD. Several factors 
could explain why SNP-based heritabil-
ities from univariate analyses of a single 
data set could generate higher estimates 
than bivariate analyses of independent 
data sets35, including loss of real signal 
or dilution of artifacts. Loss of real signal 
might occur because individual cohorts 
are more homogeneous, both 
phenotypically (for example, owing to 
use of the same assessment protocols) 
and genetically (for example, because LD 
between causal variants and analyzed 
SNPs might be higher within than 
between cohorts). Artifacts could also 
generate consistent differences in case 
genotypes relative to control genotypes 
within case-control data sets. In the 
derivation of our methodology18, we 
emphasized that any factors making SNP 
genotypes of cases more similar to those 
of other cases and making the genotypes 
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Figure 3 SNP-based heritabilities and coheritabilities. (a) For each disorder, SNP-based heritabilities are 
estimated from univariate analyses of the full data set (dark green) or of sample subsets (red and pink 
bars). These heritabilities are also estimated from bivariate analyses in which different subsets of the 
same disorder comprise the two traits (blue). Test of the heterogeneity of estimates, P value for Cochran’s 
Q: schizophrenia, 0.3; bipolar disorder, 1 × 10−6; major depressive disorder, 4 × 10−3; ADHD, 9 × 10−6; ASD, 
0.99; Higgins’ I2: schizophrenia, 21%; bipolar disorder, 86%; major depressive disorder, 71%; ADHD, 
91%; ASD, 0%). (b) For comparison, the coheritabilities using the full data sets reported in Figure 1 are 
shown. (c) As a negative control, estimates of coheritabilities with Crohn’s disease, a disease not expected 
to be genetically related to psychiatric disorders, are shown. We estimated 95% error bars using ± 1.96 
s.e. 
 

of controls more similar to those of 
other controls would produce SNP-
based heritability. The fitting as covari-
ates of principal components derived 
from the SNP data corrects both for 
population stratification and for geno-
typing artifacts, but residual population 
stratification could remain, although this 
bias should be small38. Partitioning SNP-
based heritability by chromosome in 
analyses where each chromosome was 
fitted individually compared to analyses 
where all chromosomes were fitted 
jointly is an empirical strategy to assess 
residual stratification35,39, and we found 
no evidence of this type of stratification 
here (Supplementary Fig. 1). Stringent 
quality control (as applied here) helps to 
remove artifacts, but artifactual differ-
ences between cases and controls might 
remain, particularly for data sets in 
which cases and controls have been 

genotyped independently40. As more 
data sets accumulate, the contributions 
from artifacts are diluted because the 
random directional effects of artifacts 
(including population stratification) are 
not consistent across data sets. For this 
reason, significant SNP-based coheritab-
ilities between subsets of the same 
disorder are unlikely to reflect artifacts 
and provide a lower bound for SNP-
based heritability. 
Pseudocontrols 
One strategy adopted in GWAS to guard 
against artifacts from population 
stratification is to genotype family trio 
samples (cases and their parents) and 
then analyze the data as a case-control 
sample, with controls generated as 
genomic complements of the cases 
(pseudocontrols). ADHD subset 1 and 
most of the ASD sample comprised case-
pseudocontrol samples and, consistent 
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with this strategy limiting the impact of 
artifacts from population stratification 
or genotyping, it is noted that the lowest 
SNP-based heritability for the five psy-
chiatric disorders was for ASD and that 
the estimate of SNP-based heritability 
was lower for ADHD subset 1 than for 
ADHD subset 2. However, under a poly-
genic model, assortative mating41 or 
preferential ascertainment of multiplex 
families could diminish the expected 
mean difference in liability between 
pseudocontrols and cases37, which 
would result in an underestimation of 
SNP-based heritability from case-
pseudocontrol compared to case-control 
analyses and would also result in 
nonzero estimates of SNP-based 
heritability from pseudocontrol-control 
analyses, as shown in analysis of ASD 
data37. 
SNP-based coheritabilities with 
Crohn’s disease 
As a negative control analysis, we 
conducted bivariate analyses between 
each of the PGC data sets and Crohn’s 
disease samples from the International 
IBD Genetics Consortium (IIBDGC)42. 
Although onset of major depressive 
disorder is not uncommon after 
diagnosis with Crohn’s disease43 and 
although gastrointestinal pathology is a 
common comorbidity with ASD44, there 
is no strong evidence of a familial 
relationship between psychiatric 
disorders and Crohn’s disease. Despite 
substantial h2SNP values for Crohn’s 
disease (0.19, 0.01 s.e.), none of the SNP-
based coheritabilities with the psychi-
atric disorders differed significantly 
from zero (Fig. 3c, Supplementary 
Table 6 and Supplementary Note). 
Lastly, genomic partitioning by annota-
tion of the variance in Crohn’s disease 
explained by SNPs showed, as expected, 
no excess of variance attributable to 
SNPs in the CNS+ gene set (Fig. 2). Our 
results provide no evidence of common 
genetic pleiotropy in Crohn’s disease 
and ASD, consistent with a non-genetic, 

for example, microbial45, explanation for 
the comorbidity of gastrointestinal 
symptoms in ASD. 
Potential impact of misclassification 
of disorders 
Misclassification among disorders could 
inflate estimates of genetic correlation 
and/or coheritability46. Indeed, some 
level of misclassification in psychiatric 
disorders is expected. For example, 
longitudinal studies47,48 of first admiss-
ions with psychosis showed that, with 
long-term follow-up, ~15% of subjects 
initially diagnosed with bipolar disorder 
were rediagnosed with schizophrenia, 
whereas ~4% of schizophrenia 
diagnoses were reclassified as bipolar 
disorder. Cases selected for GWAS 
contributing to PGC are more likely to 
have achieved a stable diagnosis 
compared to first-admission cases. 
However, assuming these levels of 
misclassification, the genetic correlation 
between bipolar disorder and schizo-
phrenia for true diagnoses is still high, 
estimated46 to be 0.55. Likewise, 
because a modest proportion of cases 
diagnosed with major depressive 
disorder, when followed over time, 
ultimately meet criteria for bipolar 
disorder49, our estimated genetic 
correlation between these two disorders 
may be modestly inflated by misclass-
ification. However, if moderate-to-high 
genetic correlations between the major 
adult disorders are true, then over-
lapping symptoms and misdiagnosis 
among these disorders might be 
expected. The rg SNP value between 
schizophrenia and major depressive 
disorder is also unlikely to reflect 
misdiagnosis because misclassification 
between these disorders is rare49. 
Excluding 5 of the 18 PGC schizophrenia 
cohorts containing schizoaffective disor-
der cases21 (Supplementary Table 7) 
or major depressive disorder cohorts 
ascertained from community rather than 
clinical settings (Supplementary Table 
8) had little impact on rg SNP estimates. 
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DISCUSSION 
Our results show direct, empirical, 
quantified molecular evidence for an 
important genetic contribution to the 
five major psychiatric disorders. The 
h2

SNP estimates for each disorder —
schizophrenia, 0.23 (0.01 s.e.), bipolar 
disorder, 0.25 (0.01 s.e.), major 
depressive disorder, 0.21 (0.02), ASD, 
0.17 (0.02 s.e.) and ADHD, 0.28 (0.02 
s.e.) — are considerably less than the 
heritabilities estimated from family 
studies (Table 1). Yet, they show that 
common SNPs make an important 
contribution to the overall variance, 
implying that additional individual, 
common SNP associations can be 
discovered as sample size increases50. 
h2SNP values are a lower bound for 
narrow-sense heritability because they 
exclude contributions from some causal 
variants (mostly rare variants) not 
associated with common SNPs. Although 
SNP-based heritability estimates are 
similar for major depressive disorder 
and other disorders, much larger sample 
sizes will be needed, as high risk for a 
disorder implies lower power for equal 
sample size51. The h2SNP values are all 
lower than those reported for height 
(0.45, 0.03 s.e.)39, but the estimates are 
in the same ballpark as those reported 
for other complex traits and diseases 
using the same quality control pipeline, 
such as for body mass index (BMI) (0.17, 
0.03 s.e.)39, Alzheimer’s disease (0.24, 
0.03 s.e.), multiple sclerosis (0.30, 0.03 
s.e.) and endometriosis (0.26, 0.04 
s.e.)40. 

Our results show molecular evidence 
of the sharing of genetic risk factors 
across key psychiatric disorders. Trad-
itionally, quantification of the genetic 
relationship between disorders has been 
thwarted by the need for cohorts of 
families or twins assessed for multiple 
disorders. Problems of achieving 
genetically informative samples of 
sufficient size and without associated 
ascertainment biases for the rarer 

psychiatric disorders have meant that 
few studies have produced meaningful 
estimates of genetic correlations. 
Notably, our estimates of heritability 
and genetic correlation are made using 
very distant genetic relationships 
between individuals, both within and 
between disorders, so that shared 
environmental factors are unlikely to 
contaminate our estimates. Likewise, 
our estimates are unlikely to be 
confounded by non-additive genetic 
effects, as the coefficients of non-
additive genetic variance between very 
distant relatives are negligible52. 

The estimates of SNP-based genetic 
correlation (rg SNP) between disorders 
reflect the genome-wide pleiotropy of 
variants tagged by common SNPs, and 
whether these are the same as 
correlations across the allelic frequency 
spectrum may differ between pairs of 
disorders. For example, a high rg SNP 
value but a low genetic correlation 
estimated from family studies (rg) could 
indicate that the same common variants 
contribute to genetic susceptibility for 
both disorders, although the diagnostic-
specific variants are less common vari-
ants. For this reason, the compari-son of 
rg SNP with rg estimated from family 
studies is not straightforward. Nonethe-
less, we benchmark our estimates in this 
way, calculating the increased risk of 
disorder B in first-degree relatives of 
probands with disorder A (λA,B) from the 
rg SNP value to allow comparison with 
literature values (Supplementary 
Table 1). A meta-analysis53 reported 
increased risk of bipolar disorder in 
first-degree relatives of probands with 
schizophrenia compared to first-degree 
relatives of control probands (λSCZ,BPD) of 
2.1, which implies a maximum genetic 
correlation between the disorders of 0.3 
(assuming that the disorder risks for 
schizophrenia and bipolar disorder are 
both 1% and their heritabilities are 81% 
and 75%, respectively; Table 1). 
However, a large-scale Swedish family 
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and adoption study54 estimated the 
genetic correlation between 
schizophrenia and bipolar disorder to be 
+0.60, similar to that found here. 
Profiling scoring analysis using genome-
wide SNPs32 was the first method to 
clearly demonstrate a genetic relation-
ship based on molecular data, but 
quantification as a genetic correlation 
was not reported. The evidence of 
shared genetic risk factors for schizo-
phrenia and bipolar disorder was 
strengthened by our analyses of the 
CNS+ gene set in which we saw a clear 
enrichment in variants shared by these 
two disorders. 
 Our finding of a substantial rg SNP of 
+0.43 between schizophrenia and major 
depressive disorder is notable and 
contrary to conventional wisdom about 
the independence of familial risk for 
these disorders. However, because 
major depressive disorder is common, 
even a high genetic correlation implies 
only modest incremental risk. Assuming 
the disorder risks and heritabilities for 
schizophrenia and major depressive 
disorder given in Table 1, then the 
genetic correlation between them of 
0.43 predicts increased risk of major 
depressive disorder in first-degree 
relatives of probands with schizo-
phrenia compared to first-degree relat-
ives of control probands (λ SCZ,MDD) of 
1.6. In fact, meta-analysis of five 
interview-based research studies of 
families are broadly consistent with our 
results (λSCZ,MDD = 1.5, 95% confidence 
interval (CI) = 1.2–1.8; Supplementary 
Table 9), suggesting that familial co-
aggregation of major depressive disor-
der and schizophrenia reflects genetic 
effects rather than resulting from living 
in a family environment that includes a 
severely ill family member. If replicated 
by future work, our empirical molecular 
genetic evidence of a partly shared 
genetic etiology for schizophrenia and 
major depressive disorder would have 
key nosological and research implic-

ations, incorporating major depressive 
disorder as part of a broad psychiatric 
genetic spectrum. A shared genetic 
etiology for bipolar disorder and major 
depressive disorder has been shown in 
family studies2, 3, but the rg SNP value of 
0.47 was lower than the estimate of 0.65 
from a twin study55. 
 Our results show a small but signif-
icant rg SNP value between schizophren-
ia and ASD. A lower genetic correlation 
between schizophrenia and ASD than 
between schizophrenia and bipolar 
disorder is consistent with Swedish 
national epidemiological studies, which 
reported higher odds ratios in siblings 
for schizophrenia and bipolar disorder54 
than for schizophrenia and ASD9. These 
results imply a modest overlap of 
common genetic etiological processes in 
these two disorders, consistent with 
emerging evidence from the discovery of 
copy number variants, in which both 
shared variants (for example, 15q13.3, 
1q2.1 and 17q12 deletions56,57) and 
mutations in the same genes although 
with different variants (deletions associ-
ated with schizophrenia and duplic-
ations associated with autism and vice-
versa10). The small ASD sample size 
thwarted attempts at further explorative 
partitioning of the SNP-based coherit-
ability for schizophrenia and ASD. 
 The lack of overlap between ADHD 
and ASD is unexpected and is not 
consistent with family and data linkage 
studies, which indicate that the two 
disorders share genetic risk factors5,6, 

58,59. Some rare copy number variants 
are seen in both disorders16. As noted 
above, the use of pseudocontrols for 
many of the ASD and ADHD cohorts may 
affect all results for these disorders. 
Ideally, we would investigate the impact 
of pseudocontrols, given the hierarchical 
diagnostic system (autism but not 
autism spectrum is an exclusion 
criterion for most ADHD data sets), on 
estimates of SNP-based coheritability, 
but the small ASD sample size prohibits 
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such analyses. We also found no overlap 
between ADHD and bipolar disorder, 
despite support from meta-analysis 
results of an increased risk for ADHD in 
relatives of individuals with bipolar 
disorder I (a subtype of bipolar disorder 
with more extreme manic symptoms 
than the other major bipolar disorder 
subtype) and an increased risk for 
bipolar disorder I in relatives of individ-
uals with ADHD12. These findings could 
mean that the familial link between the 
two disorders is mediated by environ-
mental risk factors or that shared genet-
ic factors are not part of the common 
allelic spectrum. Alternatively, the 
etiological link between ADHD and 
bipolar disorder might be limited to 
bipolar disorder I or early-onset bipolar 
disorder12, which, therefore, is difficult 
for us to detect. Our finding of genetic 
overlap between ADHD and major 
depressive disorder is consistent with 
evidence from studies showing 
increased rates of ADHD in the families 
of depressed probands and increased 
rates of depression in families of 
probands with ADHD12, 13. 

Our results should be interpreted in 
the context of four potentially important 
methodological limitations. First, any 
artifacts that make SNP genotypes more 
similar between cases than between 
cases and controls could inflate estim-
ates of SNP-based heritability18, but to a 
much lesser extent for SNP-based 
coheritability. Second, the sample sizes 
varied considerably across the five 
disorders. Although h2SNP values are 
expected to be unbiased, estimates from 
smaller samples are accompanied by 
larger standard errors, blurring their 
interpretation. Third, although applying 
similar diagnostic criteria, the clinical 
methods of ascertainment and the 
specific study protocols, including which 
specific interview instruments were 
employed, varied across sites. We 

cannot now determine the degree to 
which our results might have been 
influenced by between-site differences 
in the kinds of patients seen or in their 
assessments. Fourth, by combining 
samples from geographic regions, 
contributions from less common associ-
ated variants specific to particular 
populations are diluted compared to 
what would have been achieved if the 
same sample size had been ascertained 
from a single homogeneous population. 

In summary, we report SNP-based 
heritabilities that are significantly 
greater than zero for all five disorders 
studied. We have used the largest 
psychiatric GWAS data sets currently 
available, and our results provide key 
pointers for future studies. Our results 
demonstrate that the dearth of signify-
cant associations from psychiatric GWAS 
so far, particularly for major depressive 
disorder, ASD and ADHD, reflects lack of 
power to detect common associated 
variants of small effect rather than the 
absence of such variants. Hence, as 
sample sizes increase, the success 
afforded to other complex genetic 
diseases50 in increasing the understand-
ing of their etiologies is achievable for 
psychiatric disorders, as is already being 
shown for schizo-phrenia60. We also 
provide evidence of substantial sharing 
of the genetic risk variants tagged by 
SNPs between schizophrenia and 
bipolar disorder, bipolar disorder and 
major depressive disorder, schizophren-
ia and major depressive disorder, ADHD 
and major depressive disorder, and, to a 
lesser extent, between schizophrenia 
and ASD. Our results will likely contrib-
ute to the efforts now under way to base 
psychiatric nosology on a firmer 
empirical footing. Furthermore, they will 
encourage investigations into shared 
pathophysiologies across disorders, 
including potential clarification of 
common therapeutic mechanisms. 

URLs. PGC, https://pgc.unc.edu/; Genetic Cluster Computer, http://www.geneticcluster.org/; GCTA, 
http://www.complextraitgenomics.com/software/gcta/. 
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METHODS 
Data and quality control. A summary of the data available for analysis is listed in Table 1 and 
comprise data used in the PGC–Cross-Disorder Group analysis25 together with newly available 
ADHD samples27–30. Data upload to the PGC central server follows strict guidelines to ensure 
local ethics committee approval for all contrib-uted data (PGC; see URLs). Data from all study 
cohorts were processed through the stringent PGC pipeline25. Imputation of autosomal SNPs 
used CEU (Utah residents of Northern and Western European ancestry) and TSI (Toscani in 
Italia) HapMap Phase 3 data as the reference panel21. For each analysis (univariate or bivariate), 
we retained only SNPs that had MAF of >0.01 and imputation R2 of >0.6 in all contributing cohort 
subsamples (imputation cohorts). Different quality control strategies were investigated in detail 
for the raw and PGC imputed genotyped data of the International Schizophrenia Consortium, a 
subset of the PGC schizophrenia sample35. The Crohn’s disease samples from IIBDGC42 were 
processed through the same quality control and imputation pipeline as the PGC data, generating 
a data set of 5,054 cases and 11,496 controls from 6 imputation cohorts. 

In each analysis, individuals were excluded to ensure that all cases and controls were 
completely unrelated in the classical sense, so that no pairs of individ-uals had a genome-wide 
similarity relation-ship greater than 0.05 (equivalent to about second cousins). This procedure 
removed ancestry outliers (over and above those already removed in the PGC quality control 
pipeline; Supplementary Fig. 2) and ensured that overlapping control sets were allocated 
randomly between disorders in the bivariate analyses. Exact numbers of cases and controls used 
in each analysis are listed in Supplementary Tables 1–8. 

Linear mixed model for estimation of SNP-based heritability and coheritability. We used 
the methods presented in Lee et al.18,35. Briefly, we estimated the variance in case-control status 
explained by all SNPs using a linear mixed model  

y = Xβ + g + e 

where y is a vector of case (y = 1) or control (y = 0) status (the observed scale), β is a vector for 
fixed effects of the overall mean (intercept), sex, sample cohort and 20 ancestry principal 
components, g is the vector of random additive genetic effects based on aggregate SNP 
information and e is a vector of random error effects. X is an incidence matrix for the fixed 
effects relating these effects to individuals. The variance structure of phenotypic observations is  
 

V(y) = V = Aσ2g  +  Iσ2e  
 

where s2g is additive genetic variance tagged by the SNPs, s2e is error variance, A is the realized 
similarity relationship matrix estimated from SNP data19 and I is an identity matrix. All variances 
were estimated on the observed case-control scale and were transformed to the liability scale, 
which requires specification of the disorder risk K to estimate hSNP2. Risk to first-degree 
relatives was calculated from K and h2SNP on the basis of the liability threshold model62. 

The bivariate analyses used a bivariate extension of equation (1) (ref. 20). The two traits were 
measured in different individuals, but the equations were related through the genome-wide 
similarities estimated from SNPs. Genetic and residual variances for the traits were estimated as 
well as the genetic covariance σg12. The genetic correlation coefficient (rg) was calculated by 
(σg12/(σg1σg2)) and is approximately the same on the observed case-control scale as on the 
liability scale20 and so does not depend on specifications of K. The covariance σg12 can be 
transformed to the liability scale, accounting for assumed disorder risks and proportions of 
cases and controls in the samples of each disorder20, and it equals the coheritability52 rgh1h2. We 
used the approximated χ2 test statistic (estimate/s.e.)2 to test whether estimates were 
significantly different from zero. We checked that this simple approximation agreed well with 
the more formal and computer-intensive likelihood ratio test for several examples. 
Heterogeneity of SNP-based heritabilities was tested using Cochran’s Q (ref. 63) and Higgins’ I2 
(ref. 64) values, acknowledging potential non-independence of the six estimates (three subsets 
plus three subset pairs). 
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Disorder risk for the study-based population (disorder risk, K). Estimates of h2
SNP and SNP-

based coheritability from the linear model are on the case-control scale and so depend partly on 
the proportion of cases and controls in the sample. Transformation to the liability scale allowed 
benchmarking of h2SNP to estimates of heritability from family studies and the transformation 
accounts for the proportion of cases in the sample and depends on the assumed disorder risk 
(K). The appropriate choice of K depends on the definitions of both the phenotype (including 
ascertain-ment strategy) and the population, which might differ between cohorts. We consid-
ered lower and upper bounds for K in Table 1 to cover the range of possible values. rg SNP 
estimates are independent of scale and hence are not dependent on the choice of K. 

Genome-partitioning linear mixed model. We partitioned the variance explained by the SNPs 
in several ways. For example, for the univariate linear model 

Y = Xβ  +  ∑   
    t  + e 

with 

      V = ∑        Atσ
 

  
   + Iσ

 

 
 

 
where n is the number of subsets from any non-overlapping partitioning of SNPs; n = 22 for the 
joint analysis by chromosome, n = 5 for the analysis by MAF bin and n = 3 for the analysis of SNP 
by gene annotation in which SNPs were classed as CNS+ genes (2,725 genes representing 547 
Mb), SNPs in other genes (14,804 genes representing 1,069 Mb) and the remaining SNPs not in 
genes. Gene boundaries were set at ± 50 kb from the 5′ and 3′ UTRs of each gene, and CNS+ 
genes were the four sets identified by Raychaudhuri et al.34 (one set comprised genes expressed 
preferentially in the brain compared to other tissues, and the other three sets comprised genes 
annotated to be involved in neuronal activity, learning and synapses). The CNS+ set was found to 
explain more of the SNP-based heritability than expected by chance for schizo-phrenia35. All 
methods have been imple-mented into the freely available GCTA software65. 
 
62. Reich, T., James, J.W. & Morris, C.A. The use of multiple thresholds in determining the mode of 

transmission of semi-continuous traits. Ann. Hum. Genet. 36, 163–184 (1972). 
63. Cochran, W.G. The combination of estimates from different experiments. Biometrics 10, 101–

129 (1954). 
64. Higgins, J.P., Thompson, S.G., Deeks, J.J. & Altman, D.G. Measuring inconsistency in meta-

analyses. Br. Med. J. 327, 557–560 (2003). 
65. Yang, J., Lee, S.H., Goddard, M.E. & Visscher, P.M. GCTA: a tool for Genome-wide Complex 

Trait Analysis. Am. J. Hum. Genet. 88, 76–82 (2011). 
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Supplementary Table 1. Bivariate analyses  
                                                                                              Trait 1/ Trait 2  
 
                                 SCZ/BPD                 SCZ/MDD                SCZ/ASD                  SCZ/ADHD               BPD/MDD 
     
SNPs  909307  885448  896627  778235  938610  
Cases  9032/6664  9051/8998  9111/3226  9013/4108  6665/8997  
Controls  7980/5258  10385/7823  12146/3308  10115/9936  7408/7680  
SNP-h2 Trait 1a  0.22 (0.01)  0.21 (0.01)  0.23 (0.01)  0.23 (0.01)  0.23 (0.01)  
SNP-h2 Trait 2a  0.22 (0.01)  0.19 (0.02)  0.16 (0.02)  0.23 (0.02)  0.20 (0.02)  
Covarianceb  0.151 (0.010)  0.087 (0.011)  0.030 (0.011)  0.019 (0.011)  0.102 (0.013)  
SNP-rg (SE)  0.68 (0.04)  0.43 (0.06)  0.16 (0.06)  0.08 (0.05)  0.47 (0.06)  
λ1st-cov(SE)  1.7 (0.05)  1.2 (0.05)  1.2 (0.03)  1.1 (0.03)  1.2 (0.00)  
λ1st-rg  4.7  1.6  1.5  1.2  1.6  
pc  <e-16  6.0e-15  0.0071  0.072  1.5e-14  
 
 
 
literatured  

λ1st  

M-A: 2.11,  
Offspring2,e:  
2.4,5.2,4.5,6.0  
 
Sib2,e: 
3.9,3.7,3.9,5.0    

M-A f: 1.5  Parent3: 2.9  
Sibling3: 2.6  
 

Sibling       

ASD/ADHD)
6
: 2.4 

 
Parent 4,g: > 1  

 
 
 
 
M-A5,h: 3.1,2.7 

 

literature rg  0.602,i  N/A  N/A  N/A  0.657,j  

 
                                                                                              Trait 1/ Trait 2 

 
       BPD/ASD      BPD/ADHD        MDD/ASD          MDD/ADHD      ASD/ADHD 
 
SNPs  952858  834238  927731  813902  827620  
Cases  6704/3207  6656/4099  9031/3239  8936/4098  3156/4181  
Controls  9030/3294  7041/9873  9370/3331  8668/11233  3254/12022  
SNP-h2 Trait 1a  0.24 (0.01)  0.21 (0.01)  0.20 (0.02)  0.19 (0.02)  0.15 (0.03)  
SNP-h2 Trait 2a  0.17 (0.03)  0.26 (0.02)  0.17 (0.03)  0.26 (0.02)  0.25 (0.02)  
Covarianceb  0.008 (0.013)  0.013 (0.013)  0.010 (0.016)  0.071 (0.016)  -0.026 (0.017)  

SNP-rg (SE)  0.04 (0.06)  0.05 (0.05)  0.05 (0.09)  0.32 (0.07)  -0.13 (0.09)  
λ1st-cov(SE)  1.0 (0.04)  1.0 (0.05)  1.0 (0.03)  1.2 (0.04)  0.9 (0.04)  
λ1st-rg  1.1  1.1  1.1  1.3  <1  
p

c
  p = 0.53  p = 0.31  p = 0.53  p = 6.8e-06  p = 0.13  

literature
d
  

λ1st  

parent3: 1.9  
sibling3:2.5  

M-A BPD I8,k: 
2.8,2.6,2.2,2.1  

N/A  M-A9,l 1.6, 1.9  N/A  

literature rg  N/A  N/A  N/A  Q10,m: 0.78, 0.67  0.8711  
Q12:“56% of 
phenotypic 
correlation of 
0.63 attributable 
to shared genetic 
influences”  
Q13: male 0.41  
Q13: fem 0.23  
Q14: male 0.57  
Q14: fem 0.56  
Q15: 0.72  

 
(Notes on the next page) 
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SNP-h2-SNP-heritability on the liability scale, rg SNP genetic correlation, λ1st-cov : increased risk to 
1st degree relatives attributable to SNPs calculated from the SNP-coheritability and K values, i.e. 
genetic covariance = SNP-coheritability , λ1st-rg increased risk to 1st degree relatives calculated 
from the SNP-rg, K values and heritability estimates from family studies listed in Table 1. This 
provides a benchmark for comparison with literature estimates under the assumption that the 
genetic correlation is the same across the allelic spectrum.  
 
Abbreviations: M-A: meta-analysis, Q: quantitative scores, N/A to our knowledge.  
 
a: The estimates of SNP-h2estimated from the bivariate analyses differ slightly from the univariate 
estimates, because the sample sets differ (overlapping samples, removed and QC based on pairwise 
relationship), SNP sets differ (imputation R2 > 0.6 in all imputation cohorts in the analysis), as well as 
because the maximum likelihood estimate in the bivariate analysis will optimize based on 
information from both disorders.  
b: Covariance or SNP-coheritability  
c: p values of H0: SNP-coheritability = 0.  
d: Where possible we have selected meta-analyses or large studies. Note that these estimates 
may reflect but genetic and environmental factors that increase risk to relatives  
e: The four estimates from this study of national records in Sweden are 1) risk of SCZ in relative 
when proband has BPD 2) risk of BPD in relative when proband has SCZ 3) risk of SCZ in 
adopted away relatives when proband has BPD, 4) risk of BPD in adopted away relatives when 
proband has SCZ  
f: See supplementary Table 9.  
g: Small study of 29 children who were 1st-degree relatives of SCZ and 30 healthy controls  
h: 3.1= Risk of BPD in relatives of probands with unipolar disorder (MDD)/Risk of BPD in 
controls 2.2%/0.7%, 2.7=Risk of unipolar disorder(MDD) in relatives of probands with 
BPD/Risk of MDD in controls 14.1%/5.2%.  
i: Swedish national study  
j: 67 twin pairs proband with BPD and 177 twin pairs proband with unipolar disorder (MDDD).  
k: The meta-analysis study considered only bipolar disorder 1 (BPDI). The four estimates are: 1) 
Risk of ADHD in 1st degree relatives of BPD1 child probands 2) Risk of ADHD in 1st degree 
relatives of BPD1 adult probands 3) Risk of BPD1 in 1st degree relatives of ADHD adult probands 
4) Risk of BPD1 in 1st degree relatives of ADHD child probands  
l: 1.6 = 13.2% rate of depression in relatives of ADHD children/ 8.2% rate of depression in 
relatives of control children. 1.9 = 12.4% of children of depressed parents had ADHD/6.6% of 
children of control parents had ADHD  
m: 645 twin pairs, birth cohort, genetic correlation based on quantitative scores of hyperactivity 
and mood. 
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Supplementary  Table 2.  
 
Bivariate analysis for SCZ/BPD limiting data sets to those that have been collected totally 
independently.  
 
 

Trait 1/ 
trait 2  

SNPs  Cases  
T1/T2  

Controls  
T1/T2  

Trait 1  
h2 (SE)   
 

Trait 2  
h2 (SE)  
 

rg (SE)  Covariance 
OR coherit- 
ability SE)  
 

SCZ/BPD  909307  6968/5589  5392/4445  0.23 (0.01)  0.23 (0.02)  0.59 (0.05)  0.14 (0.01)  

 

h2- SNP-heritability on the liability scale, rg SNP genetic correlation           

SCZ data sets included: ISC- Aberdeen, ISC-Cardiff (Bulgarian), ISC-Dublin, ISC-Edinburgh, ISC-
Portugal, ISC-SW1, ISC-SW2, MGS, SGENE-Copenhagen, SGENE-Munich, SGENE-UCLA, Zucker 
Hillside.  

SCZ data sets excluded: Cardiff UK, CATIE, ISC-London, SGENE-Bonn, SGENE-TOP3 (data set 
names as in16)  

BPD data sets included: BOMA, GSK, STEP1, STEP2, TOP, UCL, Pritzker, and WTCCC  

BPD data sets excluded: GAIN/BiGS, Dublin, Edinburgh (data set names as in17) 
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Supplementary Table 3.  
 
Genomic partitioning by annotation  
 

Estimated proportion of variance in liability (SNP-heritability, h2 ) explained by SNPs in CNS+ 

genes other genes and non-genes for the five disorders from univariate analyses and SNP -

coheritability from bivariate analyses for the 5 pairs of disorders with significant genome-wide 

SNP correlations in Supplementary Table 2.  

                                                                h2(SE) accounted for by SNPs attributed to: h 
 

                                                                                                 No. SNPs  
              

     Cases      Controls     CNS+                    Other 

                     
                           
 
 
                                     

                 
  

                  (2725  
                  Genes  

              14804  
              genes           

          Not       Proportion in 
     CNS+(SE) 
     p-value 

SCZ  9087  12171  0.071 (0.005)  
195044  

0.079 (0.006)  
355562  

0.076 (0.006)  
364748  

0.30(0.021)  
7.6 e-08  

BPD  6704  9031  0.078 (0.007)  
213226  

0.103 (0.009)  
387545  

0.065 (0.008)  
395200  

0.32(0.026)  
5.4e-06  

MDD  9041  9381  0.053 (0.011)  
206133  

0.079 (0.014)  
373115  

0.081 (0.014)  
381845  

0.25 (0.049)  
0.32  

ASD  3303  3428  0.055 (0.014)  
209785  

0.047 (0.017)  
381897  

0.066 (0.018)  
390418  

0.33 (0.080)  
0.10  

ADHD  4163  12040  0.063 (0.013)  
197342  

0.096 (0.016)  
357278  

0.122 (0.016)  
362446  

0.22 (0.041)  
0.54  

SCZ/BPD  9032/6664  7980/5258  0.055 (0.005)  
193601  

0.043 (0.006)  
353120  

0.052 (0.007)  
362586  

0.37 (0.031)  
8.5e-08  

SCZ/MDD  9051/8998  10385/7823  0.018 (0.006)  
188535  

0.029 (0.007)  
343565  

0.039 (0.008)  
353348  

0.21 (0.060)  
0.92  

BPD/MDD  6665/8997  7408/7680  0.028 (0.007)  
200626  

0.029 (0.009)  
364387  

0.045 (0.009)  
373597  

0.27 (0.059)  
0.23  

SCZ/ASD  9111/3226  12146/3308  0.009 (0.006)  
190530  

0.013 (0.008)  
348023  

0.009 (0.008)  
358074  

0.29 (0.179)  
0.53  

MDD/ADHD  8936/4098  8668/11233  0.018 (0.008)  
173665  

0.024 (0.010)  
315210  

0.028 (0.011)  
325027  

0.25 (0.105)  
0.63  

CD  5054  11496  0.033 (0.005)  
216951  

0.124 (0.006)  
393544  

0.027 (0.006)  
397565  

0.19 (0.023)  
0.40  

 

The p-values test H0: proportion of variance explained by SNPs in CNS+ genes = v, where v is the 

proportion of SNPs in the analysis attributed to the CNS+ genes. 
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Supplementary Table 4.  
 
Genomic partitioning by minor allele frequency (MAF) of SNPs for SCZ/BPD 
analysis

   

    

 
             h2 (SE)       rg (SE)    Covariance 
                          OR     
                          coherit-   
                          ability (SE) 
 

 

  MAF  no. SNP    SCZ    BPD 
 <0.1   156900   0.02 (0.01)  0.02 (0.01)  0.59 (0.34)   0.004 (0.002) 
 0.1<<0.2 208042   0.06 (0.01)  0.04 (0.01)  0.62 (0.17)   0.011 (0.003) 
 0.2<<0.3 190274   0.05 (0.01)  0.05 (0.01)  0.70 (0.15)   0.014 (0.003) 
 0.3<<0.4 180764   0.05 (0.01)  0.05 (0.01)  0.68 (0.16)   0.013 (0.003) 
 0.4<<0.5 173327   0.05 (0.01)  0.05 (0.01)  0.77 (0.14)   0.016 (0.002) 
  Sum  909307   0.22    0.21  
  

 

 h2 SNP-heritability on the liability scale, rg SNP genetic correlation 
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Supplementary Table 5 

Univariate and bivariate analyses for sub-cohorts 

A: Univariate analyses for sub-cohorts 
 

Sub--‐cohort  SNPs  Cases  Controls  h 2ccc (SE)     h2(SE)   h2(SE) 
                observed scale   liability   liability 
                case/control   scale    scale  
 

 

         SCZ             K=0.01   K=0.005 
Sub1    915354  3220  3445   0.49 (0.04)    0.27 (0.02)  0.23 (0.02) 
Sub2    915354  2571  2419   0.55 (0.06)    0.31 (0.03)   0.26 (0.03) 
Sub3    915354  3296  6307   0.44 (0.03)    0.27 (0.02)  0.23 (0.02) 
         BPD             K=0.01   K=0.005 
Sub1    995971  2465  4058   0.49 (0.05)    0.30 (0.03)  0.25 (0.02) 
Sub2    995971  2540  2058   0.44 (0.07)    0.24 (0.04)  0.21 (0.03) 
Sub3    995971  1699  2915   0.73 (0.06)    0.43 (0.04)  0.37 (0.03) 
         MDD             K=0.15   K=0.07 
Sub1    962093  3077   3420   0.22 (0.05)    0.27 (0.06)  0.21 (0.04) 
Sub2    962093  3785  3289   0.23 (0.04)    0.27 (0.05)  0.22 (0.04) 
Sub3    962093  2179  2672   0.34 (0.06)    0.41 (0.08)  0.32 (0.06) 
         ADHD            K=0.05    
Sub1    917066  1736  1766   0.23 (0.09)    0.20 (0.08) 
Sub2    917066  2427   10274  0.30 (0.03)    0.41 (0.03) 
         ASD             K=0.01 
Sub1    982100  1893  1888   0.31 (0.08)    0.17 (0.05) 
Sub2    982100  1540  1540   0.29 (0.10)    0.16 (0.06) 
 

 

K lifetime probability of disorder.  
Subset membership using the cohort names given in the primary PGC publications.  
SCZ  
Sub1: ISC-Aberdeen, ISC-Cardiff, ISC-Dublin, ISC-Edinburgh, ISC-London, ISC-Portugal, ISC-SW1, 
ISC-SW2  
Sub2: MGS  
Sub3: SGENE-Bonn, SGENE-CH, SGENE-MUN, SGENE-TOP3, SGENE-UCLA, Cardiff, CATIE, Zucker 
Hillside  
BPD  
Sub1: BOMA, GSK, TOP, UCL, Edinburgh, Dublin  
Sub2: GAIN&BIGS, STEP1, STEP2, Pritzer  
Sub3: WTCCC  
MDD  
Sub1: GAIN, MDD2000-QIMR_610, MDD2000-QIMR_317  
Sub2: GenRed, STAR*D, RADIANT (UK)  
Sub3: RADIANT(GER)+Bonn/Mann., MPIP, GSK  
ADHD  
Sub1: CHOP, IMAGE, PUWMa included in 18 and a Canadian cohort19 (all trio samples used to 
generate cases and pseudo controls)  
Sub2: IMAGEII from18 and samples from UK20, Germany21 and Spain (genotyped on Illumina 
Omni1 and with clinical cohort described in 22) (all case-control samples).  
ASD  
Sub1: AGP, AGP2  
Sub2: CHOP, Finland, JHU, MonBos, SSC in two imputation cohorts (Illumina Infinium 1Mv3 

(duo) and Illumina Infinium 1Mv1).
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B: Bivariate analyses for sub-cohorts 

Trait 1/  SNPs  Cases  Controls Trait 1  Trait 2  rg (SE)  Covariance 
Trait  2     T1/T2  T1/T2  h2 (SE)  h2 (SE)      OR coherit- 
                           ability SE) 

             SCZ, K=0.01   

Sub1/Sub2 915354 3220/2571 3445/2419 0.26 (0.02) 0.29 (0.03) 0.84 (0.09) 0.23 (0.02) 

Sub1/Sub3 915354 3220/3296 3445/6307 0.26 (0.02) 0.27 (0.02) 0.89 (0.07) 0.23 (0.02) 

Sub2/Sub3 915354 2571/3296 2419/6307 0.30 (0.03) 0.26 (0.02) 0.79 (0.08) 0.22 (0.02) 

             BPD, K =0.01 

Sub1/Sub2 99597  2465/2540 4058/2058 0.30 (0.03) 0.24 (0.04) 0.63 (0.11) 0.17 (0.03) 

Sub1/Sub3 99597  2465/1699 4058/2915 0.28 (0.03) 0.42 (0.04) 0.88 (0.09) 0.30 (0.03) 

Sub2/Sub3 99597  2540/1699 2058/2915 0.24 (0.04) 0.43 (0.04) 0.55 (0.10) 0.18 (0.03) 

             MDD, K=0.15 

Sub1/Sub2 962093 3077/3785 3420/3289 0.27 (0.06) 0.27 (0.05) 0.65 (0.16) 0.18 (0.04) 

Sub1/Sub3 962093 3077/2179 3420/2672 0.27 (0.06) 0.41 (0.07) 0.63 (0.16) 0.21 (0.05) 

Sub2/Sub3 962093 3785/2179 3289/2672 0.27 (0.05) 0.40 (0.07) 0.38 (0.14) 0.12 (0.05) 

             ADHD, K=0.05 

Sub1/Sub2 917066 1736/2427 1766/10274 0.21 (0.07) 0.41 (0.03) 0.71 (0.17) 0.21 (0.05) 

             ASD, K=0.01 

Sub1/Sub2 982100 1893/1410 1888/1540 0.16 (0.05) 0.15 (0.06) 1.17 (0.34) 0.18 (0.05) 

 

h2 SNP-heritability on the liability scale, rg SNP genetic correlation 
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Supplementary Table 6.  

Bivariate analyses between psychiatric disorders and Crohn’s Disease (CD) control 

a: This analysis used the CD sample (WCD) from the Wellcome Trust Case Control Consortium23 

(WTCCC) and Subsets 1 and 2 from BPD. Bipolar subset 3 (BPD3) was the WTCCC BPD sample. 

Since WCD and BPD3 use the same controls, the significant covariance between BP1 & BP3 and 

BP2 & BP3 compared to no covariance for BPD1+BPD2 & WCD reflects genome-wide genetic 

similarity between the BPD cases. In all our analyses highly related individuals are excluded so 

that in the CD/BPD analysis WTCCC controls are randomly shared between the CD and BPD sets. 

Trait 1/  SNPs  Cases  Controls Trait 1  Trait 2  rg    Covariance 
Trait 2     T1/T2  T1/T2  h2 (SE)  h2 (SE)  (SE)   OR coherit-
                           ability SE) 

 

CD/SCZ  899550 4793/9074 9125/10224 0.18 (0.01) 0.23 (0.01) -0.01 (0.03) 0.00 (0.01)  
                            p = 0.70 

CD/BPD  960646 4810/6688 09143/7091 0.18 (0.01) .23 (0.01)  -0.05 (0.04) -0.01 (0.01) 

                            p = 0.22 

CD/MDD  942496 4827/9019 10600/8896 0.18 (0.01) 0.20 (0.02) 0.02 (0.05) 0.00 (0.01)  

                            p = 0.70 

CD/ASD  954950 5019/3180 11491/3271 0.19 (0.01) 0.16 (0.03) -0.07 (0.06) -0.011 (0.01) 
                            p = 0.31 

CD/ADHD 843722 4839/4166 9501/10193 0.16 (0.01) 0.26 (0.02) -0.02 (0.05) 0.00 (0.01) 

                            p = 0.71 

WCD/BPDa 960646 1671/4996 1494/5685 0.24 (0.03) 0.21 (0.02) 0.03 (0.08) 0.01 (0.02)  

                            p = 0.74 

 

a: This analysis used the CD sample (WCD) from the Wellcome Trust Case Control 

Consortium23 (WTCCC) and Subsets 1 and 2 from BPD. Bipolar subset 3 (BPD3) was the 

WTCCC BPD sample. Since WCD and BPD3 use the same controls, the significant 

covariance between BP1 & BP3 and BP2 & BP3 compared to no covariance for 

BPD1+BPD2 & WCD reflects genome-wide genetic similarity between the BPD cases. In 

all our analyses highly related individuals are excluded so that in the CD/BPD analysis 

WTCCC controls are randomly shared between the CD and BPD sets. 
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Supplementary Table 7.  

Bivariate analysis for SCZ/BPD and SCZ/MDD excluding SCZ cohorts that include 

some schizoaffective disorder cases 

 

Trait 1/  SNPs  Cases  Controls Trait 1  Trait 2  rg    Covariance 
Trait 2     T1/T2  T1/T2  h2 (SE)  h2 (SE)  (SE)   OR coherit-
                           ability SE) 
 
SCZ/BPD  909307 5308/6664 5623/5258 0.25 (0.01) 0.22 (0.01) 0.68 (0.05) 0.16 (0.01) 

SCZ/MDD  909307 5316/8998 7810/7823 0.25 (0.01) 0.22 (0.02) 0.38 (0.06) 0.09 (0.01) 

 

Cohorts excluded from SCZ (cohort names given in the primary PGC publication16) 
ISC-Portugal, MGS, SGENE-CH, SGENE-TOP3, Zucker Hillside 

 

 

Supplementary Table 8.  

Bivariate analysis for BPD/MDD excluding MDD community-based samples 
 

 
Trait 1/  SNPs  Cases  Controls Trait 1  Trait 2  rg    Covariance 
Trait 2     T1/T2  T1/T2  h2 (SE)  h2 (SE)  (SE)   OR coherit-
                           ability SE) 
 
BPD/MDD 938610 6665/5916 7408/4169 0.23 (0.01) 0.23 (0.04) 0.54 (0.08) 0.12 (0.02) 

 

h2 SNP-heritability on the liability scale, rg SNP genetic correlation 

MDD data sets included: GenRed, GSK, MPIP, RADIANT (GER) + Bonn/Mannheim, 

RADIANT (UK), STAR*D. 

MDD data sets excluded: GAIN (partly a community-based sample), MDD2000-

QIMR_610, MDD200-QIMR_317. (Data set names as in 24). 
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Supplementary Table 9.  

Meta-analysis of the relative risk (odds ratio) for schizophrenia and MDD (unipolar 

disorder) among first-degree relatives of schizophrenic probands in controlled family 

studies 

                   MDD 

  

 Iowa Family Study25          0.9 (0.6-1.4)a 

 NIMH26               2.2 (1.2-3.2)a 

 Danish Adoption Study27         1.8 (0.6-4.9)a 

 Roscommon Family Study28       1.7 (1.2-2,6)a 

 Mainz Family Study29          1.7 (1.1-2.6)a 

 Finnish Adoption Study30        0.6 (0.2-1.6)b 

 New York Study31           1.0 (0.4-1.9)c 

 Bonn-Mainz multi-generation study32    2.6 (1.4-4.1)d 

 New York High Risk Study33       1.0 (0.5-2.1)e 

 Copenhagen High Risk Study34       1.3 (0.6-3.0)f 

 Washington University St Louis Study35   1.1 (0.2-5.9)g  

 

 Meta-analysis             1.5 (1.2-1.8) 

 

a. As reported in 32 

b. Relative risk (RR) based on offspring with either depressive disorder with psychosis 
or nonpsychotic depression RR = ((2+4)/137) / ((1+13)/192) 

c. RR uses N affected as reported in their Table 1 and age-adjusted N from their footnote. 
RR = (17/329.2) / (18/337.4) 

d. RR uses age-adjusted prevalences from their Table 3 and N from their Table 2. RR = 
(22.4 / 8.5) 

e. RR = (1.2+26.2) / (0+27.2) from their Table 2, psychotic and non-psychotic major 
depression 

f. We used the estimates from the non-hierarchical data since we could not account for 
censoring in the hierarchical data. From their Table 3 hierarchical diagnosis RR= 11.9 / 
8.9. 

Odds ratios and relative risks are considered interchangeable. 
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SUPPLEMENTARY FIGURES 

A. Proportion of variance in liability (SNP-heritability) explained by SNPs from each 

chromosome for SCZ from a SCZ/BPD bivariate analysis. 

 

B. Proportion of variance in liability (SNP-heritability) explained by SNPs from each 

chromosome for BPD from a SCZ/BPD bivariate analysis- 

 

C. Proportion of covariance in liability (SNP-coheritability) explained by SNPs from each 

chromosome SCZ/BPD 
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D. SNP genetic correlation between SCZ/BPD 

 

Supplementary  Figure 1. Chromosome partitioning of genetic variance for schizophrenia 

(A), bipolar disorder (B), genetic covariance between schizophrenia and bipolar disorder 

(C) and genetic correlation between schizophrenia and bipolar disorder (D) from a 

bivariate analysis fitting 22 chromosomes. 
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A. SCZ before relatedness cut-off < 0.05 (9431 cases and 12848 controls). The number of 

individuals outside the bounds of CEU ± 6 s.d. (dotted lines) is 33. 

 

B: SCZ after relatedness cut-off < 0.05 (9087 case and 12171 controls) 
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C: BPD before relatedness cut-off < 0.05 (8275 cases and 10532 controls). The number of 

individuals outside the bounds of CEU ± 6 s.d. (dotted lines) is 28. 

 

D: BPD after relatedness cut-off < 0.05 (6704 case and 9031 controls) 
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E: MDD before relatedness cut-off < 0.05 (9322 cases and 10306 controls). The number of 

individuals outside the bounds of CEU ± 6 s.d. (dotted lines) is 43. 

 

F: MDD after relatedness cut-off < 0.05 (9041 cases 9381 controls) 
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G: ADHD before relatedness cut-off < 0.05 (4607 cases and 12659). The number of 

individuals outside the bounds of CEU ± 6 s.d. (dotted lines) is 38. 

 

H: ADHD after relatedness cut-off < 0.05 4163 cases and 12040 controls) 
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I: ASD before relatedness cut-off < 0.05 (3661 cases and 4040 controls). Excluding the 144 

outliers does not change the estimate of SNP heritability. 

 

J: ASD after relatedness cut-off < 0.05 (3381 cases and 3508 controls) 

 

Supplementary Figure 2. Principal Component Analysis for each disorder. Mapped with 

HapMap3 samples. Pink: YRI, Blues: CHB and JPT, Yellow and red: SCZ cases and controls, 

Green: CEU (usually hidden behind cases and controls) 
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