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Abstract: 
 

Correcting the relationship between tonic and burst firing modes in dopamine neurons may 

help normalize stimulus-reinforcement gradients and contingent behavior in ADHD children. 

But appropriate evaluations of stimuli for developing adaptive plans and controlling 

impulsivity will not occur without moderating the gain-like functions of serotonin. The 

“Dynamic Theory” correctly highlights the need to account for variability in ADHD. The 

dysmaturation of pre-executive information processing is proposed as an explanation. 

At the core of the article by Sagvolden and colleagues there is a set of data that throws light 

on an aspect of the ADHD phenomenon. But one asks if the authors are a measure too brave 

to generalize so broadly from the unusually steep reinforcement gradients reported for the 

human condition and an animal model to the syndrome as a whole. 
 

Commentary: 

Sagvolden et al acknowledge that 

transmitter systems other than the 

dopaminergic pathways are likely to be 

involved in causing or mediating the 

features of the ADHD condition. So it 

would be unfair to emphasize the 

potential pathophysiological contributions 

of these transmitters too much. The 

problem is that they impinge on the core 

of the hypothesis proposed.  

For example, the “Dynamic Theory” 

does not take account of a role for 

serotonin (5-HT). One notes that, several 

agents (e.g. amphetamine, cocaine) act 

presynaptically and affect dopamine (DA) 

transport. Amphetamine has a therapeutic 

effect. But both alter 5-HT dynamics. 

Indeed if the DA transporter is knocked 

out in rodents reinforcement measured by 

cocaine administration (Mateo et al. 2004) 

or conditioned place preference to 

amphetamine (Budygin et al. 2004) 

remains, until a 5-HT1a antagonist is 

administered. In ADHD children cognitive 

impulsivity measured by a reduced 

probability of inhibition in the stop-task, is 

associated with decreased affinity 

(increased Kd in platelets) of the 5-HT 

transporter (Oades et al. 2002). In 

continuous performance tests, perceptual 

sensitivity falls with an increased excretion 

of 5-HT metabolites (Oades 2000). The 

relationship of DA to 5-HT activity (HVA/5-

HIAA) seems depressed in some samples 

of ADHD children (Oades 2002), although 

increases of this ratio may reflect motor 

activity (Castellanos et al. 1994). Thus 

there is reason to believe that 5-HT plays a 
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marked role in the sensory, 

reinforcement, inhibitory and motor 

processes that are disturbed in ADHD. 

Our argument would imply, at least in 

relation to 5-HT activity that the DA 

system is hypoactive. We seem to be 

partially in agreement with Sagvolden et 

al. on DA “hypo-activity”. Certainly, the 

stimulant nature of methylphenidate that 

acts at catecholaminergic and not 5-HT 

sites seems to be consistent with this 

standpoint. However, if this is so one must 

find an explanation for how ADHD 

phenomenology can co-exist with 

Tic/Tourette syndromes, where psycho-

stimulants are contra-indicated and 

neuroleptics can ameliorate. Can ADHD 

symptoms co-exist with what appears to 

be a hyperactive DA system? 

Sagvolden et al refer to the potentially 

crucial difference between the tonic and 

burst firing modes of ascending DA 

neurons elaborated by Grace (2001: 

pp.26-27). Herein could lie the answer to 

the Tic/ADHD conundrum. Putatively, the 

tonic level of DA neuron firing is high in 

Tic-patients and lies close to the threshold 

for eliciting burst firing. Psychostimulants 

may then raise spontaneous firing levels 

such that the threshold for burst firing is 

exceeded more often, analogous to the 

elicitation of sterotypies in rodents with 

high doses of amphetamine. For ADHD 

patients, starting from lower levels of 

tonic firing (hypoactivity), this upgrading 

of sensitivity to DA may be of course “just 

what the doctor ordered”. However this 

still begs the question whether the core of 

ADHD problems (that can also be found in 

Tic-patients) lies outside the direct 

influence of DA. Perhaps the mere 

promotion of the likelihood of DA function 

in and around the synapse is helpful, but 

indirectly so.   

Let us return to the ‘core of ADHD 

problems’. Sagvolden et al (also 

Castellanos & Tannock 2002) highlight the 

variability of response as one of the 

central features of ADHD. A prediction of 

the “Dynamic Theory” is that this 

variability arises from the “extra-nominal” 

class or unusual response pattern (for a 

given situation) becoming ‘the rule’. This is 

an interesting and unusual form of 

‘persistence’, but as such is consistent 

with hypo-dopaminergic function. The 

function that we note here is the role of 

increasing DA activity in initiating action or 

promoting the likelihood of a switch 

between competing actions, as proposed 

and demonstrated elsewhere (Oades 

1985; Oades 1997). Sagvolden et al. also 

expressly note that the function of burst-

firing DA neurons lies in the initiation of 

behavior (p.15). Thus to a degree we 

agree on the so-called role of ascending 

DA activity. But we also note it is 

consistent with the more parsimonious 

idea of DA having a general role in 

competitive information processing rather 

than specific reinforcement (Oades, 1999). 

Important for the discussion here is 

that there is an alternative explanation for 

the variability of behavior in ADHD. 

Namely, that there is an impairment in 

top-down control of processing incoming 

information. This control may be 

independent of DA, although it may be 

markedly influenced by an impaired role 

of noradrenaline in ‘tuning’ different 

inputs. This viewpoint may account for a 

range of anomalous features of ADHD not 

incorporated by the impairment of 

perception and integration of reinforce-

ment described in the ‘Dynamic Theory’. 

There are examples from the control of 

attention. Steady state visual potential 

latencies in ADHD suggest a decreased 

efficiency in coupling between PRF 

networks, especially in the right 

hemisphere (Silberstein et al. 1998). 

Reduced speeds of conduction (Ucles et al. 

1996) and delayed latencies (e.g. P1, N1: 

Karayanidis et al. 2000; Johnstone et al. 
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2001) in late developing regions (e.g. 

delayed myelination) would form a good 

basis for response variability and poor 

time perception (Rubia et al. 2003; Toplak 

et al. 2003). The delay could also account 

for the slowed orienting of attention by 

the right hemisphere to the left visual field 

and evaluation of the cue eliciting the 

orientation (McDonald et al. 1999, Oie et 

al. 1998; Carter et al. 1995). With such 

“inefficient coupling” it is no surprise that 

event-related recordings show poor 

differentiation of Go, No-go stimuli and 

errors in the stages of information 

processing that follow (Dimoska et al. 

2003; Liotti et al. 2004). Further this 

hypothesis is consistent with data 

supporting an etiology in terms of a 

maturational lag (Cantwell 1985), with the 

delay particularly affecting those parts of 

the frontal lobe that develop last.  

Part of our suggestion may be 

consistent with part of the ‘Dual Pathway’ 

hypothesis (Sonuga-Barke 2003). 

Undoubtedly the “Dynamic Theory” with 

its emphasis on mesolimbic reinforcement 

mechanisms finds support from another 

part of the dual pathway. Sagvolden and 

colleagues make a major constructive 

contribution to the continuing need to try 

to account for all the data. 
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Abstract:  

Attention-deficit/hyperactivity disorder (ADHD) is currently defined as a cognitive/behavioral 

developmental disorder where all clinical criteria are behavioral. Inattentiveness, overactivity, and 

impulsiveness are presently regarded as the main clinical symptoms. The dynamic developmental 

behavioral theory is based on the hypothesis that altered dopaminergic function plays a pivotal role by 

failing to modulate non-dopaminergic (primarily glutamate and GABA) signal transmission 

appropriately. A hypo-functioning mesolimbic dopamine branch produces altered reinforcement of 

behavior and deficient extinction of previously reinforced behavior. This gives rise to delay aversion, 

development of hyperactivity in novel situations, impulsiveness, deficient sustained attention, 

increased behavioral variability, and failure to “inhibit” responses (“disinhibition”). 

A hypo-functioning mesocortical dopamine branch will cause attention response deficiencies 

(deficient orienting responses, impaired saccadic eye movements, and poorer attention responses 

toward a target) and poor behavioral planning (poor executive functions). A hypo-functioning 

nigrostriatal dopamine branch will cause impaired modulation of motor functions and deficient non-

declarative habit learning and memory. These impairments will give rise to apparent developmental 

delay, clumsiness, neurological “soft signs,” and a “failure to inhibit” responses when quick reactions 

are required. Hypo-functioning dopamine branches represent the main individual predispositions in the 

present theory. The theory predicts that behavior and symptoms in ADHD result from the interplay 

between individual predispositions and the surroundings. The exact ADHD symptoms at a particular 

time in life will vary and be influenced by factors having positive or negative effects on symptom 

development. Altered or deficient learning and motor functions will produce special needs for optimal 

parenting and societal styles. Medication will to some degree normalize the underlying dopamine 

dysfunction and reduce the special needs of these children. The theory describes how individual 

predispositions interact with these conditions to produce behavioral, emotional, and cognitive effects 

that can turn into relatively stable behavioral patterns. 

Keywords:  

catecholamine; clumsiness; dopamine; hyperkinesis; hyperkinetic disorder; impulsivity; monoamine; 

neuromodulator; overactivity; pollutants; reinforcement; reward; verbally governed behavior; soft signs; 

variability 

 

 

 


