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Abstract 

Background ADHD is a common and complex genetic disorder. Genetic risk factors are 

expected to be multiple, have small effect sizes when considered individually and to interact 

with each other and with environmental factors.  

Objective To describe the difficulties involved in the genetic investigation of such a 

complex disorder and give a prospective for the future.  

Methods Review based on empirical literature and project description.  

Results Considerable progress has been achieved through the association analysis of 

candidate gene loci. Linkage scans using affected sibling pairs have identified a number of 

potential loci that may lead to the identification of novel genes of moderate effect size. 

Quantitative trait locus (QTL) approaches provide powerful complementary strategies that 

have the potential to link the categorical disorder to continuously distributed traits 

associated more closely with underlying genetic liability in the general population. Success in 

identifying some associated genes has been complemented by functional studies that seek 

to understand the mode of action of such genes.  

Conclusion Progress in understanding the mechanisms involved has not been 

straightforward and many inconsistencies have arisen. In order to take advantage of the 

potential for progress that stems from the genetic findings it will be important to draw upon 

a variety of approaches and experimental paradigms. A functional genomic approach to 

ADHD means that investigation of gene function is carried out at various levels of analysis, 

not only at the level of molecular and cellular function but also at the level of psychological 

processes, neuronal networks, environmental interactions and behavioural outcomes. 
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Introduction 

Molecular genetic methods have been 

highly successful in identifying genes of 

major effect that co-segregate with single 

gene disorders. As a result huge strides 

have been made in our understanding of 

conditions such as Huntington’s disease, 

fragile-X syndrome, familial Alzheimer’s 

disease and rare familial epilepsies, among 

many others. Progress in identifying 

genetic risk factors for more common and 

complex disorders has however proved to 

be far more difficult since in most cases 

the genetic influences result from multiple 

genetic variants, each conferring only a 

small additional risk to disease suscept-

ibility. This is the case for attention deficit 

hyperactivity disorder (ADHD) where 

familial risks are relatively low, with an 

estimated sibling risk ratio (λs = risk to 

siblings of ADHD probands/population 

risk) for broadly defined ADHD of around 

3- to 4-fold [36]. Twin studies support the 

view that genetic factors are the major 

influence on familial risk with heritability 

estimates for ADHD symptom scores 

consistently reported to be in the region 

of 60–90% [169]. In general these studies 

find little evidence of shared environ-

mental influences on familiarity, although 

the role of environment may still be 

pivotal, acting through mechanisms of 

gene-environment interaction [149]. 

Progress in identifying some of the genes 

involved in ADHD susceptibility has been 

relatively fruitful over the past decade by 

screening genetic variants that lie within 

or Attention-Deficit Hyperactivity Disorder 

in the post-genomic era close to genes 

that regulate neurotransmitter systems, 

particularly dopamine pathways. At the 

same time, two studies using affected 

sibling pair methods have identified 

several putative target regions that may 

contain novel ADHD susceptibility genes, 

although the major findings do not 

replicate across the two studies and the 

findings remain speculative. This almost 

certainly reflects the low power of linkage 

analysis as compared to association 

analysis to detect genetic variation 

conferring relatively small risks to the 

disorder. Here we review the main 

methods being adopted to map the genes 

that influence risk for ADHD and consider 

the extent to which functional genomic 

approaches have progressed our 

understanding of the mechanisms behind 

genetic susceptibility of ADHD. 

Quantitative trait locus (QTL) methods 

Until recently gene mapping studies in 

human have depended on the identific-

ation of genetic linkage or association with 

defined disease categories. However many 

human  phenotypes such as blood 

pressure, obesity, cholesterol levels, 

reading ability and general cognitive 

ability can be perceived as traits that are 

continuously distributed throughout the 

population. The key hypothesis that arises 

from this is whether the same genetic 

variants that increase risk for a specific 

disorder also influence symptom scores 

(levels of the associated trait) across the 

population, the so-called quantitative trait 

locus (QTL) hypothesis. For example do 

genetic variants that increase risk for 

dyslexia also influence levels of reading 

ability in the general population? The 

importance of this approach is not simply 

to answer questions about the size of 

genetic influences and the relationship 

between normality and abnormality at the 

level of etiological genetic factors. 

Quantitative approaches provide powerful 

methods to examine the relationship 

between correlated behavioural traits and 

experimental measures, test mediation 

hypotheses that seek to identify the 

cognitive processes and neuronal 

networks that mediate genetic influences 

on behaviour and adopt QTL methods for 

genetic mapping. 

The applicability of the QTL approach to 

disorders such as ADHD can be tested 
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using the multiple regression twin method 

proposed by DeFries and Fulker (DF). DF 

analysis is based on differential regression 

to the population mean of MZ and DZ co-

twins when proband twins are selected for 

extreme scores (http://psych.colorado. 

edu/~willcutt/CLDRC/DFanalysis.htm [27, 

28]). If an extreme proband deficit is due 

to genetic influences then both MZ and DZ 

co-twin means will regress to the 

population mean; however the DZ co-twin 

mean will regress further towards the 

population mean than the MZ co-twin 

means. In contrast if proband deficits stem 

from environmental insults such as early 

traumatic brain injury or obstetric 

complications, both MZ and DZ co-twin 

means should regress to the population 

mean. Proband deficits that stem from 

shared environmental risk factors will 

affect both proband and co-twins equally, 

so that the means of both MZ and DZ co-

twins will regress equally to the 

population mean. Twin studies that have 

adopted this approach have all estimated 

high group heritability for extreme groups 

defined using thresholds on parent rated 

ADHD symptoms scales [94, 169] and are 

consistent with the view that genetic 

influences on ADHD are the same as those 

that influence continuous measures of 

ADHD symptom scores across the 

population. In another study [144], early 

ADHD symptom-scores were studied in 

6,000 UK twin pairs and ADHD symptom 

scores at ages 2, 3, and 4 were found to be 

highly heritable (~90 %), regardless of twin 

age or the measurement cut-off used. 

Furthermore, it was found that heritability 

is equally high at both the low and high 

ends of the distribution, again suggesting 

that the trait is continuously distributed 

(Price et al., unpublished data). Despite 

these findings, this remains an area that 

has not been adequately investigated in 

relation to ADHD, since as yet there are no 

published reports that estimate group 

heritability where the extreme group is 

defined using recognised operational 

criteria and reliable data capture tools 

such as standardised interview. Unpubl-

ished data, however, of 97 probands with 

a research diagnosis of DSM-IV combined 

subtype and their unselected siblings from 

the IMAGE project dataset (see below) 

estimated sibling correlations of 0.29 for 

teacher rated ADHD-symptom scores and 

0.27 for parent rated symptoms scores, 

using a method related to DF analysis (The 

IMAGE Consortium, unpublished data). In 

contrast, latent class analysis suggests the 

existence of both symptom sub-group and 

severity classes that breed independently, 

raising the possibility that in ADHD differ-

ent genetic influences act at different 

points across symptom dimensions [173]. 

Nevertheless, available evidence suggests 

that QTL methods should be applicable to 

the study of ADHD. 

In a series of paradigm studies on 

dyslexia, QTL linkage methods have 

successfully been used to identify several 

loci that increase risk for dyslexia [14, 40, 

105, 106]. These studies have used a 

number of different selection criteria to 

maximise the power of the analysis and 

balance this against the cost and effort 

involved in both sample collection and 

genotyping. Conventional sibling pair 

linkage studies aim to collect large series 

of affected sibling pairs. Following 

genotyping of sufficient polymorphic 

genetic markers the analysis seeks to 

identify short segments of parental 

chromosomes that are shared by affected 

siblings more frequently than by chance 

alone. Sibling pairs are grouped by the 

number of parental alleles that they share 

identical-by-descent (ibd), and tested for 

deviation from the expected ratio of 1:2:1 

for 0, 1 or 2 parental alleles shared ibd. 

However affected sibling pair methods are 

not very suitable for continuous traits 

since they restrict ascertainment to the 

identification of cases and fail to take 

advantage of the continuous relationship 
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between genotype and phenotype. For 

example in the original Haseman-Elston 

approach [58] ibd score is correlated with 

the squared difference in phenotypic 

score, (X1 – X2)2, for each sibling pair. 

Fulker et al. [43] suggested continuous 

selection of a proband falling beyond a 

specific threshold together with an 

unselected sibling. For analysis, they 

modified the DeFries and Fulker 

regression model originally developed for 

use with twins [27, 28]. Fulker then 

provided a multipoint procedure solution 

for the mapping of QTLs for continuous 

traits, in both selected and unselected 

samples [44]. Although QTL linkage 

methods can use population samples with 

no selection of either probands or siblings, 

for a given amount of genotyping, 

selection of extreme concordant and 

discordant sibling pairs will add consider-

able power to the analysis. For example, in 

ADHD far more power will be gained by 

focusing on individuals with extremely low 

or extremely high ADHD symptom scores.  

A new ADHD linkage study, The 

International Multicenter ADHD Gene 

project (IMAGE) takes advantage of QTL 

methods. IMAGE is a major genetic 

initiative funded by NIMH that brings 

together research groups from across 

Europe, Israel and the United States 

(Amsterdam, Boston, Dublin, Essen, 

Göttingen, Jerusalem, London, Nijmegen, 

Southampton, Tel-Aviv, Valencia and 

Zurich). The basic study design is similar to 

that suggested previously by Fulker [43] 

and applied to the investigation of dyslexia 

[14]. The main difference is that instead of 

selecting probands who fall above a 

particular threshold for ADHD-symptom 

counts, probands are selected if they have 

a DSM-IV diagnosis of the combined sub-

type of ADHD. Siblings on the other hand 

are unselected for phenotype in the initial 

ascertainment, but subsequently the most 

informative pairs are selected for geno-

typing using their ADHD-symptom counts 

to derive an index of potential informat-

iveness for linkage for each sib-ship [145].  

The initial purpose of the IMAGE 

project will be to perform quantitative 

trait locus (QTL) linkage analysis using 

around 800 sibling pairs selected for 

maximal informativity from a larger set of 

sibling pairs. In general siblings whose 

ADHD-symptom counts fall within the top 

10% or bottom 20% of the distribution 

form the most informative pairings with 

ADHD probands. Using this sample, a 

genome scan utilising 400–500 highly 

polymorphic genetic markers is estimated 

to have around 80% power to detect 

linkage regions containing QTLs 

contributing 10% to phenotypic variance 

and 50% power for 5% QTLs. The usual 

approach taken in the fine-mapping stage 

is to search for association within target 

regions where there is reasonable 

evidence of linkage, using dense maps of 

anonymous markers or by targeting 

markers located close to or within 

candidate genes that lie within the region. 

The IMAGE sample will have considerable 

power for this type of analysis and is 

estimated to have 80% power to identify 

associations contributing as little as 1–2 % 

to phenotypic variance, or odds ratios 

around 1.2 for association to the DSM-IV 

combined subtype diagnosis. 

Linkage and association approaches to 

mapping ADHD genes 

Positional cloning strategies such as 

that outlined above for the IMAGE sample 

and those already underway by the 

UCLA/Oxford and Dutch groups (see 

below), have several potential pitfalls. 

Chromosomal regions mapped using 

sibling pair linkage methods are very 

broad, so that even where significant 

linkage regions can be established a 

considerable amount of additional work is 

required to identify specific genetic 

variants associated with altered gene 

function and risk for ADHD. 
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A potential problem that needs to be 

considered is the possibility that genes 

conferring moderate to large genetic risks 

(> 5% to 10% QTL effect size) may not 

exist. It is therefore feasible that all 

susceptibility genes for ADHD will fall 

below the level of signal detection for 

feasible linkage studies. Furthermore, 

even if a few genes of moderately large 

effect are identified we should still expect 

there to be many important influences 

from multiple genes of small effect, acting 

either alone or in concert with other 

genetic and environmental factors. In this 

scenario, it is unlikely that such genes 

would be easily detected by linkage and 

we will have to search for association 

using targeted candidate genes or 

potentially (in the future) genome wide 

scanning methods for association. For 

example we may envisage a time when it 

will be feasible to obtain the entire 

genome sequence for all the individuals 

within an ADHD study sample. The genes 

that have already been replicated in 

several independent association studies of 

ADHD appear to be of this type, with small 

estimated odds ratios of 1.4–1.9 for DRD4 

[38], 1.2 for DAT1 [24], 1.3 for DRD5 [98] 

and 1.4 for SNAP-25 [121]. 

A further potential problem is the 

existence of allelic heterogeneity, in which 

a few or multiple rare variants of a gene 

give rise to susceptibility. In this scenario it 

would be difficult to detect association 

following a positive linkage result or to 

detect association if the genetic effects 

are small. Detection of association in the 

presence of allelic heterogeneity 

represents the “high hanging fruit” that 

will in many cases require further 

technological advances to be made. The 

availability of complete sequence data for 

individuals within a sample suitable for 

gene mapping, combined with an 

increased ability to predict functional 

sequences may provide a solution, by 

enabling genes to be identified that show 

a higher level of functional change (but 

not of one specific functional variant) in 

cases versus controls. 

Contemporary approaches to association 

mapping 

Association methods are particularly 

powerful in identifying common genetic 

variants that confer risk for common 

complex disorders, the “low-hanging 

fruit”. Currently a great deal of effort is 

going into the development of methods to 

detect such genes. The availability of 

sequence data spanning most of the 

human genome’s 3 _ 109 base pairs has 

been accompanied by the rapid 

identification of a class of common poly-

morphic variants known as single 

nucleotide polymorphisms (SNPs) that 

occur on average once every 500 base 

pairs [107]. The current version of the 

publicly available SNP database (dbSNP) 

contains information on almost 6 million 

SNPs of which around half are likely to 

represent true SNPs with minor allele 

frequencies greater than 10% and suitable 

for testing the common variant common 

disorder hypothesis (http://www.ncbi. 

nlm.nih.gov/SNP/). The holy grail of 

association mapping is to perform 

genome-wide association tests although 

the same methods are equally applicable 

to the analysis of candidate genes and 

linkage target regions. 

One strategy aimed at reducing the 

amount of genotyping is to generate 

population specific linkage disequilibrium 

(LD or marker-marker association) maps 

[13, 45, 52, 70]. The idea is that adjacent 

sets of markers are often organised into 

groups or blocks, with high levels of LD 

between markers defining a block. 

Although there are many potential 

combinations of marker genotypes across 

individual chromosomes (known as 

haplotypes), there is usually limited 

haplotype diversity with only a few 

haplotypes occurring at frequencies above 
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5%. It is therefore suggested that a subset 

of SNPs that tag common haplotypes 

describing most genetic diversity will be 

sufficient to identify disease associated 

functional variants. This, it is argued, will 

provide a cost-efficient approach by 

reducing the amount of genotyping, in 

comparison to single locus studies. This 

view led to the launch of a large publicly 

funded effort to generate genome wide LD 

maps in different population samples (the 

HapMap project), which will become a 

major international resource. The DNA 

samples for the HapMap will come from a 

total of 270 people from the Yoruba 

people in Ibadan, Nigeria, Japanese in 

Tokyo, Han Chinese in Beijing, and the 

CEPH trios. The numbers of samples (30–

45 for each group) is thought to allow the 

project to find almost all haplotypes with 

frequencies of 5% or higher (http://www. 

hapmap.org). Several issues raised by this 

approach have yet to be resolved 

including uncertainty over the marker 

density required to accurately define 

haplotypes blocks [140], whether haplo-

type data generated in one population will 

generalise to other sample populations, 

and the most efficient method for geno-

typing [13]. Even when sets of haplotype 

tagging SNPs are identified, the need to 

genotype hundreds of individuals for 

thousands of markers remains prohib-

itively expensive for many investigators 

using currently available methods.  

One conclusion that all investigators 

are however agreed upon is the large 

number of SNPs that need to be analysed, 

even to exclude the possibility of 

association to an individual candidate 

gene. For this reason many journals will no 

longer publish negative genetic 

association papers that report on only one 

or a few SNP markers. One alternative 

strategy designed to reduce the amount of 

genotyping is DNA pooling, in which 

individual samples of DNA are combined 

together in pools from which allele 

frequencies are estimated; this can 

substantially reduce the cost and 

feasibility of large scale association studies 

in the initial screening stages [152]. The 

power of this approach to detect 

associations is comparable to the 

haplotype tagging approach where a high-

density map of SNPs is available [69]. The 

basic idea is that because of the increased 

efficiency in numbers of genotypes per-

formed (several hundred-fold, compared 

to 4- to 5-fold with the tagging approach) 

many more markers can be examined. The 

adoption of DNA pooling strategies based 

on comprehensive SNP maps of targeted 

functional regions is therefore an effective 

alternative approach. 

Some groups have adopted an 

alternative approach by screening within 

linkage target regions using high-density 

maps of another class of polymorphisms, 

microsatellite or simple sequence repeat 

markers (SSRs) [111].Two studies from 

Decode in Iceland have been successful in 

identifying associations to complex 

disorders using such an approach, the 

Neuregulin I gene in schizophrenia [159] 

and the gene encoding phosphodiesterase 

4D in ischaemic stroke [56]. The marker 

maps used are far less dense than those 

proposed for systematic screening with 

SNPs, so these studies suggest that at least 

in some regions association between SSRs 

and surrounding markers may spread over 

relatively wide distances in some 

populations. The success of this approach 

in these two studies provides a strong 

argument for adopting a similar approach 

to the initial screen of linkage target 

regions in other common complex genetic 

disorders. 

Progress in gene mapping and the 

functional genomics of ADHD 

There has already been considerable 

progress in the genetics of ADHD. This has 

arisen largely by good fortune since, until 

recently, the entire field of molecular 
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psychiatry research has focused on a 

relatively small number of candidate 

genes that regulate the dopamine and 

serotonin neurotransmitter systems; 

however these are the most obvious set of 

candidates to test in ADHD based on the 

known response of ADHD symptoms to 

stimulant medication and other evidence 

implicating monoamine neurotransmitter 

pathways. The conclusion from numerous 

studies carried out using the same set of 

genetic polymorphisms across multiple 

psychiatric phenotypes is that ADHD is one 

of the main disorders associated with 

genetic variation in several of these genes. 

The genetic data therefore lend consider-

able support to the a priori hypotheses. In 

contrast positional cloning approaches 

have been less fruitful to date, however 

unlike current candidate gene methods 

that focus only on one gene at a time, 

they have the potential to identify novel 

genes and molecular mechanisms that 

have a greater influence on risk for ADHD. 

Linkage studies 

To date there have been two linkage 

studies of ADHD both using affected 

sibling pair methods to carry out genome-

wide scans [4, 39, 130]. The first set of 

papers came from a dataset collected in 

the greater Los Angeles area ascertained 

mainly through advertisements requesting 

participation of families with at least two 

children showing signs of ADHD. The 

sample reflected ADHD clinical samples 

ascertained elsewhere with few 

individuals with the hyperactive/impulsive 

subtype (6 %), although there was a 

greater proportion of the inattentive 

subtype (40%) compared to the combined 

subtype (54 %) from that seen in most 

European samples. Using an initial dataset 

of 126 affected sibling-pairs and a 10-cM 

grid of simple sequence repeat markers 

they were able to exclude any loci 

conferring a sibling relative risk ratio (λs) 

of ≥ 3 from 96% of the genome and those 

with a sibling relative risk ratio of ≥ 2.5 

from 91%, indicating that there was 

unlikely to be any genes of moderate to 

major effect. LOD scores of ≥ 1.5 indicated 

a number of possible target regions on 

chromosomes 5p12, 10q26, 12q23, and 

16p13. They also used a QTL approach to 

the analysis of their data using ADHD 

symptoms counts, suggesting a possible 

region of linkage on 12p13 with a 

maximum LOD of 2.6 [39].  

In a follow-up study using an extended 

dataset of 270 affected sibling pairs from 

204 nuclear families the same group found 

increased evidence for linkage on 

chromosome 17p11 with a combined 

maximum LOD score of 2.98 compared to 

only 0.79 after the initial scan alone [130]. 

Other loci that did not give rise to 

significant findings in the initial study (LOD 

≤1) but did in the extended sample 

included 5p13 (combined LOD=1.77), 6q14 

(1.75), 11q25 (1.27) and 20q13 (1.19). In 

contrast the locus on chromosome 16p13 

identified in the initial study gave a much 

smaller LOD score in the new samples 

(0.5) but retained the highest overall 

evidence for linkage with a combined LOD 

of 3.73. 

The Dutch genome scan employed 164 

sibling pairs recruited from clinical centres 

and through advertisements to patient 

organisations [4]. In contrast to the US 

sample 85 % had the combined subtype 

diagnosis and 13% the inattentive 

subtype. In addition they included 26 

individuals who met full criteria for DSM-

IV ADHD but also met criteria for an 

autism spectrum disorder and 13 siblings 

who had only 5 out of the 6 required 

symptoms in one or both symptom 

domains. Using the same criteria of 

possible linkage if the LOD score was ≥ 1.5 

they found several regions of interest on 

chromosomes 4p16.3, 7p13, 9q33.3, 

13q33.3 and 15q15.1. In addition they had 

several additional loci with LOD ≥ 1.0 on 
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chromosomes 3q13.2, 5p13.1, 6q26 and 

10cen. Of particular interest was their 

most promising finding on 15q with a 

maximum LOD score of 3.54 when all the 

sibling pairs were included in the analysis; 

this region having been previously 

implicated in similar scans of reading 

disability and autism. 

In drawing conclusions from these two 

linkage studies the most notable 

observation is the poor correlation 

between them with only one region of 

overlap on 5p13. This suggests that genes 

of moderate to large effect are unlikely to 

exist but it remains possible that some of 

the linkage regions highlighted by these 

studies my contain genes of more minor 

effect. In this case the marginal power of 

linkage to detect such loci would suggest 

that replication of target regions would 

only rarely occur. As expected neither 

study had the power to detect linkage to 

the genes that have already been 

identified as associated with ADHD. We 

also do not know the extent to which the 

differences are due to clinical or genetic 

heterogeneity. Differences between the 

two studies include homogeneity of the 

populations, the sex ratio and the preval-

ence of the inattentive subtype of ADHD. 

Of potential interest is the overlap in 

both studies with linkage scans of autism. 

In the US study the three regions of 

strongest linkage (5p13, 16p13 and 17p11) 

have all been highlighted in genome scans 

of autism [130]; the 16p finding in 

particular has been highlighted in three 

independent scans [156]. The Dutch group 

also found that that the region of highest 

evidence for linkage on 15q showed some 

overlap with linkage regions for autism [4], 

suggesting that genes of moderate effect 

may influence both conditions. This 

hypothesis appears unlikely given the 

relatively large size of the pleiotropic gene 

effects that would have to be involved, 

but is supported by the occurrence of both 

autism spectrum and ADHD symptoms in 

some individuals. Identification of specific 

genes that give rise to the linkage findings 

will clarify this issue. 

Reading disability (RD) is another 

phenotype that frequently co-occurs with 

ADHD and may share genetic influences. 

Twin studies estimate high bivariate 

heritability suggesting that one or more 

common genetic variants may increase 

susceptibility to both disorders [49, 160, 

178]. Direct evidence for this hypothesis 

came from a QTL study of the known RD 

linkage region on chromosome 6p that 

revealed significant bivariate linkage 

suggesting the influence of a chromosome 

6p locus on both disorders [179]. More 

recently, the CLA/Oxford group adopted a 

QTL linkage method to reanalyse their 

genome scan data from 233 ADHD 

affected sibling pairs, using a composite 

index of reading ability [95]. Suggestive 

linkage to RD was found in four 

chromosomal regions including regions on 

16p and 17q that had previously been 

implicated in ADHD. In addition they 

found some evidence for unique RD loci 

on regions of 2p, 8p and 15q (but not 6p) 

that coincided with those previously 

reported in studies of RD.  

Association studies 

This section describes the most 

prominent findings in the current 

literature that have been replicated in 

three or more datasets. Other candidate 

gene associations reported in one or two 

studies or not widely replicated, are not 

described here but may turn out to be 

important once further data has accrued. 

The candidate gene approach has been 

targeted mainly at the dopamine and 

serotonin systems to date. A few studies 

have investigated markers in the 

norepinephrine transporter gene [7, 113] 

and some in nicotine receptor genes [78, 

79, 171] but more work needs to be done 
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to either include or exclude association 

with these genes.  

The dopamine D4 receptor gene (DRD4) 

The association of ADHD with the 7-

repeat allele of a variable number tandem 

repeat (VNTR) polymorphism in exon 3 of 

DRD4 (DRD4.7) was first described in 1996 

in a small sample of 39 children and 39 

ethnically matched controls [87]. The 

association to the 7-repeat allele had 

previously been reported to novelty 

seeking in adults [9, 33] although this 

finding is far from conclusive and has not 

been established by follow-up studies and 

meta-analysis [33, 47, 48, 71–73, 90, 91, 

99, 101, 129, 133, 135, 139, 142, 150, 161, 

162, 192]. In contrast the DRD4 

association with ADHD has been found 

more consistently despite several negative 

reports and some discrepancies between 

case-control and within family studies [17, 

37, 38, 61, 67, 81, 119, 125, 136, 146, 148, 

155, 163, 165, 166]. 

A number of studies reported a pattern 

of findings suggestive of population 

genetic stratification [67, 119, 148]. Each 

of these studies found a significant excess 

of the 7-repeat allele in cases compared to 

independent controls, however none were 

able to replicate this finding using within 

family tests of association. These 

observations are reflected to some extent 

in the relative strength of association in 

the meta-analysis of case-control (OR = 

1.9, 95% CI = 1.4–2–2, p = 0.00000008) vs. 

within family tests (OR = 1.4, 95% CI = 1.1–

1.6, p = 0.02) performed by Faraone et al. 

[38]. In an attempt to investigate these 

differences, Holmes et al. [66] examined 

the possibility that the 7-repeat allele is 

more strongly associated with the 

subgroup of children with ADHD and 

comorbid conduct problems, a hypothesis 

supported by family and twin studies 

suggestive of higher genetic loading for 

the co-morbid subgroup [161]. Using a 

collaborative UK dataset recruited from 

clinics in Manchester, Ireland, Birmingham 

and London a total of 67 children were 

identified who fulfilled diagnostic criteria 

for ADHD and displayed conduct disorder 

symptoms. In this case, TDT analysis that 

had previously yielded negative results for 

the total sample showed evidence of 

association (24 versus 13 transmissions of 

the 7-repeat allele, one-tailed P=0.05). 

Although suggestive of subgroup specific-

ity, the co-morbid group was found to 

have higher hyperactivity and hyperactive-

impulsive scores suggesting that 

hyperactivity rather than conduct disorder 

might explain the significant finding. 

Another question raised by these 

findings is whether systematic differences 

between the samples used for case 

control and within family samples tests of 

association could account for the 

observed differences. In contrast to case 

control studies that require a series of 

singleton individuals with ADHD, within 

family tests usually require the analysis of 

complete trios consisting of an ADHD 

proband plus both parents available for 

DNA sampling. The difference in selection 

procedures might therefore introduce a 

bias since the severity of parent or 

proband phenotype might influence family 

stability and therefore complete parental 

ascertainment. When this was examined 

considerable differences were indeed 

found. Children from duos with one 

parent missing (usually father) showed a 

significantly higher frequency of DSM-IV 

ADHD-combined type, significantly more 

co-morbid conduct disorder and conduct 

disorder symptoms, and a trend for higher 

total ADHD symptom scores [177]. 

Exclusion of duos and singletons with no 

parental DNA available could therefore 

reduce the power of within family tests of 

association. 

Given the amount of evidence 

supporting the association between ADHD 

and DRD4 it is perhaps surprising that the 
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functional role of this gene in ADHD has 

yet to be established. Analysis of 

behavioural paradigms in mice suggests 

that at a genetic level DRD4 appears to be 

critical for the behavioural expression of 

reward seeking behaviours. For example 

DRD4 (–/–) mice exhibit less novel object 

exploration than DRD4 (+/+) mice, while 

the C57 mouse strain shows enhanced 

novel object exploration when treated 

with a D4 receptor agonist [32, 143], 

suggesting that increased D4 receptor 

sensitivity may be associated with reward 

seeking behaviours. DRD4 (–/–) mice also 

show reduced spontaneous locomotion 

and rearing suggesting an association 

between novel object exploration and 

activity level that is mediated at least in 

part by DRD4 function. 

Several authors have attempted to 

demonstrate functional differences 

between the various repeat sequences of 

the DRD4 VNTR using in vitro cellular 

transfection systems but as yet no firm 

conclusions can be drawn. Asghari et al. 

[3] concluded that the polymorphic repeat 

sequence causes only small changes in the 

ability of the D4 receptor to block cAMP 

production, after they demonstrated a 2- 

to 3-fold lower potency for dopamine 

mediated coupling to adenyl cyclase for 

the DRD4 7-repeat compared to the DRD4 

2-repeat and DRD4 4-repeat alleles. In a 

further set of experiments by the same 

group they further concluded that there 

were no functional differences between 

the DRD4 2-repeat and DRD4 10-repeat 

alleles, strongly suggesting that there is no 

direct relationship between the length of 

the repeat polymorphism and changes in 

pharmacology and receptor function [74]. 

Finally, an independent group found that 

there were no quantitative differences in 

G protein coupling between the DRD4 2-

repeat, DRD4 4-repeat and DRD4 7-repeat 

alleles [76]. Their investigations of D4 

receptor mutants showed that the regions 

adjacent to the VNTR sequence were 

required for G protein coupling; however 

deletion of the VNTR sequence itself had 

no impact on receptor function. 

While the direct evidence for a 

functional role of the DRD4 repeats 

remains uncertain, considerable additional 

work has gone into delineating in more 

detail the genetics of this region. This has 

served to highlight the complexity of the 

region and suggests that considerable 

allelic heterogeneity may be contributing 

to the association with ADHD. It has been 

known for some time that DRD4 is one of 

the most variable human genes due to 

both repeat polymorphism and sequence 

variation within the 48 base pair VNTR in 

exon 3. The level of variation enabled the 

origins of individual alleles to be tracked 

by re-sequencing the variable region in 

600 alleles derived from individuals in 

North and South American, European, 

Asian and African populations [29]. In total 

56 distinct haplotypes were found 

composed of 35 distinct 48 base pair 

motifs and it was possible to show that 

the origin of the 2 to 6 repeat alleles can 

be explained by simple one-step 

recombination/mutation events. In 

contrast, the 7-repeat allele is not simply 

related to the other common alleles and 

strong linkage disequilibrium between the 

7-repeat allele and surrounding DRD4 

polymorphisms suggests that this allele is 

at least 5- to 10-fold younger. It appears 

therefore that the 7-repeat allele arose as 

a rare mutational event that increased in 

frequency due to positive selection. As 

such, it can be inferred that possession of 

the 7-repeat allele carries some 

evolutionary advantage providing further 

support for a functional role associated 

with this allele. Finally, the same group 

went on to re-sequence 250 DRD4 alleles 

obtained from 132 ADHD probands [53] 

and found that most of the 7-repeat 

alleles were the same conserved 

haplotype found in the previous study. Of 

particular interest however, was the 
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observation that half of the 24 haplotypes 

uncovered in ADHD probands were not 

found in the original study of a worldwide 

series of control individuals. Over 10 

percent of the ADHD probands had these 

novel haplotypes, a finding that is unlikely 

to have occurred by chance (p=0.0001). A 

major conclusion from these studies is the 

suggestion that allelic heterogeneity at the 

DRD4 locus may contribute to the 

observed association with ADHD. 

The strength of linkage disequilibrium 

between the 7-repeat allele and 

surrounding regions raises the possibility 

that the association with ADHD may be 

due to other nearby polymorphisms. 

Several investigators have examined the 

promoter region with this in mind since no 

other coding region variants have been 

identified at sufficient frequency to 

explain the observed association. 

Okuyama et al. [132] identified a 

functional promoter SNP (–521 C/T) that 

reduced transcriptional activity by 40% 

and reported an association between the 

C allele of this polymorphism and the 

personality traits of novelty seeking and 

impulsivity.  Subsequent studies however 

have failed to replicate this finding with 

ADHD [6, 120]. Another functional 

promoter polymorphism, a 120-base pair 

duplication, has been reported to be 

associated with ADHD in two independent 

studies [85, 112], although neither study 

found an association to the 7-repeat 

allele. While functional studies have 

shown a strong effect of this repeat on 

levels of transcriptional activity [25], other 

groups have been unable to replicate the 

association with ADHD including studies 

from Toronto and London using samples 

that did show association with the 7-

repeat allele [6, 120]. The conclusion from 

these promoter polymorphism studies is 

that they do not explain the association 

between ADHD and the DRD4 7-repeat 

allele; however the possibility exists that 

they exert small effects on the risk for 

ADHD independent of the 7-repeat 

finding. 

The dopamine transporter gene (DAT1) 

Association between ADHD and the 10-

repeat allele of a 40-base pair variable 

number tandem repeat polymorphism 

(VNTR) in the 3’-untranslated region of 

DAT1 has also been reported in numerous 

studies and meta-analyses; although the 

net effect across studies appears to be 

small with an average odds ratio of around 

1.2 [8, 19, 21, 24, 26, 50, 67, 85, 125, 148, 

170, 176]. Since the high risk allele occurs 

on around 70% of Caucasian chromo-

somes and even higher in some other 

populations [19], it might be better to 

conceive of the dopamine transporter 

polymorphism conferring a protective 

effect against ADHD. Interestingly, there is 

significant evidence for heterogeneity 

across the various datasets [24]. Unpubl-

ished work reported by Irwin Waldman on 

the meta-analyses of available datasets 

suggests that a subtype specific associ-

ation to the combined subtype may 

explain the apparent heterogeneity. This is 

consistent with his earlier report where he 

concluded that the DAT1 association was 

especially strong with the combined but 

not the inattentive subtype [176]. 

To date there has been no direct 

demonstration of a functional role for the 

DAT1 VNTR although the 10-repeat allele 

has been shown to be associated with 

increased levels of messenger RNA 

(mRNA) in postmortem brain tissue [118]. 

This suggests that the DAT1 

10-repeat allele is associated with an 

increased production or turnover of the 

dopamine transporter consistent with the 

main hypo-dopaminergic hypothesis of 

ADHD. Some in vivo brain SPECT scan 

studies of DAT density appear to support 

this finding, reporting increased striatal 

DAT density among ADHD probands [30, 

31, 82] and among individuals carrying 

two versus one copy of the 10-repeat 



 12 

allele [62]. This neat set of findings is 

however far from established since several 

other studies have failed to find the 

reported associations with striatal DAT 

density or DAT1 genotype and we can not 

yet conclude that the DAT VNTR is 

associated with altered regulation of the 

transporter protein [68, 110, 175]. 

In vitro studies using transient 

transfection of cell lines have been equally 

inconclusive with as yet no clear 

demonstration of functional differences 

between the common 9 and 10-repeat 

alleles [42, 55, 114, 123]. Although the 

DAT1 VNTR lies within the 3’ untranslated 

region (UTR) of the gene and is therefore 

at the opposite end of DAT1 from the 

upstream promoter sequences, 3’UTR 

sequences are known to be important in 

the regulation of gene expression. It is 

apparent that 3’UTR sequences can 

specifically control the nuclear export, 

polyadenylation status, sub cellular 

targeting and rates of translation and 

degradation of mRNA. The 3’UTR may thus 

be viewed as a regulatory region that is 

essential for the appropriate expression of 

many genes and modifications in 3’ UTR 

mediated functions may affect the 

expression of one (such as a gene carrying 

a mutation in its 3’ UTR) or more (such as 

by changes in a trans-acting factor 

affecting the fate of different mRNA 

molecules) genes [20]. 

Michelaugh et al. [114] demonstrated 

that the DAT1 VNTR enhances 

transcription in mouse-embryonic 

substantia nigra derived cell lines although 

their study did not compare the effect of 

the 10 versus the 9 repeat. Fuke et al. [42] 

examined the effect of the VNTR 

polymorphism on gene expression using 

the luciferase reporter system in human 

COS-7 cells. They found that reporter gene 

expression was significantly higher in cells 

transfected with the 10-repeat allele 

compared to the 7-repeat or 9-repeat 

alleles. In contrast, Miller & Madras [123] 

concluded that the 9-repeat allele was 

correlated with increased expression in 

human HEK-293 cells, but that expression 

was further mediated by a SNP also 

located in the 3’UTR of DAT1, but not 

within the VNTR itself. However their 

findings were not totally consistent 

between experiments with the 9-repeat 

actually showing no difference to, or lower 

expression than, the 10-repeat in several 

replications. Finally, Greenwood & Kelsoe 

[55] found no effect on transcription of 

the 9- and 10-repeat alleles in human 

SN4741 cells; although they found a 1.5 

fold difference in regulatory activity 

between haplotypes of the promoter/ 

intron 1 region and enhancer elements 

within introns 9, 12 and 14. 

Unlike the DRD4 repeat polymorphism, 

the DAT1 VNTR is highly conserved with 

no internal polymorphism identified from 

sequence analysis [42, 117]. In the 

absence of any direct evidence for the 

functional role of the VNTR sequences the 

possibility of an alternative functional 

polymorphism in the vicinity needs to be 

considered. The linkage disequilibrium 

studies of Greenwood and Kelsoe [54] 

suggest that any such functional variant 

must lie in the distal 3’ region including 

exon 9 through to 15 and the 3’UTR 

sequences, since the genetic variation 

spanning the gene shows a distinct two-

block pattern of linkage disequilibrium. 

Further studies are now required to 

isolate the relevant functional sequences 

and demonstrate the way in which they 

alter DAT function.  

Much has been made of the increased 

level of activity observed in mice that lack 

the dopamine transporter gene. These 

animals are observed to show marked 

over activity when first exposed to open 

fields, associated with an approximately 

300-fold increase of dopamine in the 

synapse [51]. However the over activity is 
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not spontaneous in the sense that they 

habituate over time and in the home cage 

they do not appear to be more overactive 

than wild-type mice; in contrast to 

children with ADHD who show reduced 

activity levels when presented with novel  

situations and become more active as they 

habituate to the situation [2]. 

Furthermore as outlined above current 

human studies suggest that ADHD is 

associated with increased DAT1 

expression and presumably reduced 

synaptic dopamine, although this remains 

uncertain.  

A more pertinent and naturalistic 

model of DAT1 function with greater 

relevance to the hypothesis of altered 

gene expression is the analysis of mice 

with altered levels of DAT expression. In 

an attempt to model altered DAT1 

expression, a hyper-dopaminergic mutant 

mice model with approximately 70% 

elevated synaptic dopamine was 

generated by reducing the expression of 

DAT to 10% of wild-type levels (DAT 

knockdown) [181]. Unlike the DAT 

knockout mice they show no growth 

retardation; however they are similar with 

regard to activity levels, which are the 

same as wild-type mice in the home cage 

and over active compared to wild type 

mice in novel environments. 

Of further interest is the interaction 

with response to rewards since the 

knockdown mice appear to show greater 

incentive salience (“wanting”) to a sweet 

reward. The knockdown mice learned to 

complete a runway task for a sweet 

reward in fewer trials and consistently 

completed the task more quickly each day 

during training. The faster completion of 

the runway task was primarily attributable 

to their avoidance of delays within the 

runway that distracted wild-type mice 

[138]. Extrapolating this to humans, 

incentive salience can be seen as a 

motivational component of an individual’s 

response to rewards [10] that may in turn 

be associated with ADHD. For example 

several investigators have demonstrated 

that under rewarded conditions and fast 

presentation of stimuli children with 

ADHD may perform as well as control 

children on a variety of cognitive-

experimental tasks [80, 154, 174]. One 

interpretation is that this reflects changes 

in the allocation of energetic resources 

(i.e. the effortful maintenance of optimal 

arousal and activation levels) or state-

regulation of individuals with ADHD. It 

therefore seems reasonable to speculate 

that links may exist between dopamine 

regulation, incentive salience and 

response to rewards, and that these in 

turn may mediate the genetic influences 

on task performance for some aspects of 

the ADHD phenotype. 

An alternative opportunity to examine 

the influence of altered DAT1 expression 

on mouse behaviour comes from the 

comparison of mice with one copy of 

DAT1 (heterozygous mice) versus those 

with two copies (wildtype mice). However, 

these studies do not appear to show 

differences between the two types of mice 

suggesting that the increased activity in 

open field and other associated 

behavioural observations may be 

restricted to large reductions in dopamine 

re-uptake from the synapse, which does 

not mirror the relatively minor expression 

differences related to the human VNTR 

polymorphisms. Whether these animals 

would show differences on more subtle 

behavioural tests such as response to 

reward and delay of reward paradigms has 

yet to be investigated. As with all animal 

models of human behaviour the 

interpretation of behavioural observations 

is complicated and is unlikely to be an 

exact paradigm for the human condition. 

Nevertheless the observations seem to 

provide support for the central role of 

dopamine regulation in relationship to 
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several core behavioural and cognitive 

processes related to ADHD.  

Synaptosomal-associated protein 25 

(SNAP-25) 

Interest in SNAP-25 stemmed directly 

from the mouse behavioural observation 

that the Coloboma mouse strain displays 

spontaneous over activity [63]. Coloboma 

is a radiation mutant mouse strain with a 

contiguous gene defect that results in 

several abnormalities including 

spontaneous over activity, head-bobbing 

and ocular dysmorphology. Unlike the 

over activity seen in the DAT1 knockout 

and knockdown mice, the Coloboma strain 

shows a 3-fold increase in activity level in 

the home cage. Moreover the activity of 

the Coloboma is highly variable, 

suggesting loss of control of activity rather 

than a simple increase in the basal motor 

activity. Coloboma mice exhibit around 50 

% reduction in SNAP-25 mRNA and protein 

levels and it is interesting therefore that 

the abnormal activity is reversed using a 

SNAP-25 transgene to increase expression 

levels; suggesting a dose dependent 

relationship between gene level, SNAP-25 

expression and behavioural response. The 

SNAP-25 protein is membrane bound and 

forms part of a complex that mediates the 

vesicular release of neurotransmitters. 

Deficits in the expression of SNAP-25 are 

therefore expected to lead to reductions 

in the amount of neurotransmitter 

released. Although the gene is widely 

expressed in many synapses it appears 

that under-expression leads to selective 

deficits, including dopamine release in the 

dorsal striatum that regulates motor 

activity and may also impair the regulation 

of executive functions processed in the 

pre-frontal cortex [180]. 

There is now increasing evidence to 

suggest that genetic variants within SNAP-

25 influence the risk for ADHD. While an 

early study found no linkage between 

ADHD and markers in the chromosome 

20p11-12 region containing SNAP-25 [64] 

there are to date no negative association-

based studies of SNAP-25 markers and 

ADHD. Barr et al. [5] were the first to 

investigate two SNPs that they had 

identified within the 3’UTR of the human 

gene and found evidence to suggest a 

specific haplotype (T-C haplotype) was 

associated with ADHD in a Canadian 

sample. This finding was partially 

supported by Kustanovich et al. [86] using 

a US Caucasian sample, who found 

evidence for the same haplotype but only 

when paternal transmissions were 

considered. Brophy et al. [11] using an 

Irish sample investigated the same SNPs 

and while they found no evidence to 

support biased transmission of the 

haplotype nominated by Barr et al., they 

did find that one of the SNPs (T-allele of 

second SNP) was individually associated 

with ADHD as well as evidence for 

increased transmission of the risk allele 

from paternal chromosomes. Finally, Mill 

et al. [121] found no association to the 

individual SNPs, but found significant 

association to a different allelic combin-

ation of the two-marker haplotype (T-T 

haplotype), as well as further evidence for 

paternal transmission from the analysis of 

additional markers (see below). 

The inconsistent pattern of findings 

complicates the interpretation of these 

data and raises the possibility of multiple 

type I errors. The overlapping but 

disparate results suggest that neither of 

these two SNPs mediate functional effects 

on SNAP-25 themselves, but they may be 

in linkage disequilibrium (associated) with 

other functional markers in or near to this 

gene. This hypothesis may seem surprising 

given the recent emphasis on the use of 

haplotype blocks to map common disease 

variants based on the premise that 

marker-marker relationships are relatively 

stable across broadly similar ethnic 

populations. However the stability of 

haplotype blocks is dependent on many 
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factors including map density and may be 

sensitive to the precise population under 

study. As discussed earlier, an alternative 

approach is to identify and investigate all 

genetic variants that may confer a 

functional role so that analysis is less 

dependent upon the strength of 

association between selected genetic 

markers [69].A more in depth analysis of 

SNAP-25 has been carried out by Mill et al. 

[121] who screened the coding, UTR and 

promoter regions for common 

polymorphisms and identified 12 genetic 

variants, eight of which had minor allele 

frequencies of 5% or more. Association 

analysis in a UK Caucasian sample found 

associations with three of these markers 

including a tetra-nucleotide repeat in the 

first intron of the gene (Fig. 1). 

The other interesting observation from 

three out of the four SNAP-25 studies is 

that the association with ADHD appears to 

stem mainly from paternally transmitted 

alleles, suggesting that genomic imprinting 

may be an important factor mediating the 

expression of SNAP-25. Genomic 

imprinting is an epigenetic mechanism 

that regulates the expression of many 

genes and can also have dramatic effects 

on the phenotypic expression depending 

on whether the variant allele is derived 

from the maternal or paternal 

chromosome. As yet there appears to be 

no investigation of this phenomenon or 

examples of imprinted genes for the 

SNAP-25 region in either mouse or human. 

Further work is required to test directly 

the hypothesis that genomic imprinting is 

acting on genes within chromosome 

20p11-12, but the fact that three 

independent groups each find that ADHD 

is more strongly associated with paternally 

derived SNAP-25 alleles increases the 

overall confidence in this interesting 

finding.

 

 

 

 
 

 
Fig. 1 Global significance values for eight common polymorphisms across SNAP-25 using four 

different methods for within family association analysis. * Indicate the two SNPs first described by 

Barr et al. [5]. Adapted from Mill et al. [121] 
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The dopamine D5 receptor gene (DRD5) 

DRD5 is an intron-less gene that shows 

high structural and functional homology to 

the dopamine D1 receptor gene. Genetic 

investigation of DRD5 is complicated by 

the existence of two pseudogenes present 

on different chromosomes that have 

around 98% homology to DRD5 but are 

thought to have no functional expression 

[127].Association studies of this gene have 

focused on a dinucleotide (CT/GT/GA)n 

polymorphism [153] that lies within a non-

duplicated region around 19,000 base 

pairs from the start of transcription. 

Following an initial report of association 

between the common allele of this 

polymorphism and ADHD [26] numerous 

other groups have reported the same 

significant association or a non-significant 

trend of association to the same allele. 

These data have been collated and a 

formal meta-analysis of 14 independent 

studies performed that shows a combined 

association of the DRD5 locus with no 

evidence of heterogeneity (p=0.00005; 

OR=1.24, 95% CI 1.12–1.38) [94]. Analysis 

of ADHD subtypes found similar strength 

of the association to the DSM-IV combined 

(CT) and inattentive (I) subtypes but not to 

the hyperactive impulsive (HI) subtypes; a 

finding that is in keeping with a twin study 

that reported cross concordance between 

the CT and I subtypes but not between 

these and the HI subtype [173]. 

Although functional studies of the 

(CT/GT/GA)n marker have not been 

performed, its location at some distance 

from the coding region of DRD5 suggests it 

is unlikely to be involved in gene 

expression and does not alter DRD5 

protein structure, receptor binding, or 

signalling. Attempts to delineate the 

associated region further using simple 

sequence repeat markers have been 

unsuccessful. For example three markers 

covering a region of ca. 68 kb including the 

single DRD5 exon were all associated with 

ADHD, and thus did not provide further 

localising information [60]. Furthermore, 

there are as yet no published 

investigations using putative functional 

markers apart from [115] who found no 

association to a (TC)n repeat marker in the 

promoter region. Within the coding region 

five sequence changes have been 

identified that predict protein alterations, 

including a ‘missense’ change that would 

lead to a prematurely truncated protein 

and result in a 50 % loss of functional D5 

receptor and a non-synonymous SNP 

(amino acid substitution) that results in an 

approximately 10-fold decrease in 

dopamine binding [22, 157]. Although rare 

and therefore unlikely to explain the 

observed association with DRD5, these 

have yet to be investigated in ADHD. 

There have as yet been few functional 

genomic studies of DRD5. An initial report 

on mice with null mutations (D5–/–) found 

that under baseline conditions D5–/– mice 

were generally normal on locomotor 

activity and several tests of cognitive 

function, although pharmacological 

activation of dopamine pathways led to 

some altered responses relevant to 

exploratory locomotion, startle, and pre-

pulse inhibition [65]. As with mouse 

models of other genes associated with 

ADHD, studies investigating more subtle 

and complex paradigms that better reflect 

the ADHD phenotype would be 

interesting. 

Serotonin system genes –5HT1B and SERT 

In addition to the focus on dopamine 

system genes there have been a few 

studies focusing on genes that regulate 

the serotonin neurotransmitter system. 

Interaction between the two neurotrans-

mitter systems is well recognised and was 

neatly demonstrated in the paradoxical 

calming effects of stimulants on the DAT1 

knockout mouse through the effects of 

stimulants on serotonergic transmission 

[46]. Serotonin regulates dopaminergic 
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neurotransmission in several areas of the 

brain via several serotonin receptors 

including 5-HT1B. Furthermore, animal 

studies have suggested the involvement of 

the 5-HT1B receptors in locomotor 

behaviour [46, 108]. Reduced serotonin 

activity is related to increased aggression 

and poor impulse control in both human 

and animal studies and there is 

considerable additional evidence 

implicating its key role in both anxiety and 

depression [12, 16, 46, 57, 92, 93, 100]. 

Several investigators have examined 

polymorphisms in the serotonin 

transporter gene (SERT) for associations 

with ADHD. Of particular interest is an 

insertion/deletion polymorphism in the 

promoter region and a VNTR within intron 

2, both of which appear to have functional 

effects on SERT expression [97, 124]. Kent 

et al. [77] investigated both of these 

polymorphisms and in keeping with two 

earlier studies [151, 193] found increased 

transmission of the long allele of the 

promoter polymorphism from parents to 

their ADHD offspring,  which was 

significant in a combined analysis of the 

three datasets (p = 0.008). A Turkish study 

using a case-control design reported a 

similar association with a lower frequency 

of the short homozygous genotype among 

their ADHD cases compared to controls (p 

= 0.02) [182].However, in another study of 

150 ADHD probands Langley et al. [89] 

found no evidence for the association with 

either of the SERT polymorphisms alone or 

combined as a haplotype. The evidence 

for association with the intron 2 VNTR is 

particularly inconsistent, suggesting that 

this polymorphism is unlikely to have a 

direct influence on risk for ADHD.  

The 5HT1B receptor has also shown 

evidence of association with ADHD in 

several datasets. Two studies published at 

around the same time reported 

association to the same SNP allele. The 

first study from Hawi et al. [59] combined 

datasets from four independent groups in 

the UK and Ireland and found preferential 

transmission of a SNP polymorphism 

(allele 861G; P=0.01). It was therefore of 

considerable interest that the only other 

study to look at this particular SNP using a 

sample of ADHD probands from Canada 

reported a similar result (p=0.09) [147]. 

Combining the two studies enhanced the 

finding (p=0.001) suggesting the possible 

involvement of this locus in ADHD 

susceptibility.  

Despite the obvious interest in both the 

SERT and 5HT1B findings, these findings 

remain uncertain until they have been 

investigated more widely. 

QTL association studies 

As discussed above, it has been widely 

postulated that the categorical diagnosis 

of ADHD should be seen as the extreme 

end of a set of traits quantitatively 

distributed in the general population. A 

consequence of this is that the genes 

associated with clinical ADHD should also 

influence these underlying traits in non-

affected individuals. The notion that 

heritability is constant across the trait 

distribution has interesting consequences 

in terms of finding genes that influence 

levels of hyperactivity. A good test of this 

hypothesis would be to examine whether 

specific genetic risk factors, known to have 

a role in clinical ADHD, correlate with 

continuous measures of ADHD symptoms 

in the general population. To date, 

however, there have been only a few 

studies investigating this hypothesis 

directly, or using population samples to 

contrast individuals who score high and 

low on ADHD symptom counts. These 

studies have been largely negative with 

some inconsistent evidence for the QTL 

association of the DAT1 10-repeat allele 

and a possible protective effect of the 

SNAP-25 microsatellite allele 2. An initial 

report of association with the DRD4 7-

repeat allele using selected individuals 
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from a population sample [23] was not 

confirmed when the dataset was further 

extended (Curran et al., personal 

communication), and there have been two 

other negative studies using population 

samples [122, 172].  

Waldman et al. [176] were the first to 

suggest that DAT1 acts as a QTL when they 

observed that siblings discordant for the 

number of DAT1 10-repeat alleles differed 

markedly in their levels of hyperactive-

impulsive and inattentive symptoms, such 

that the sibling with the higher number of 

risk alleles had a higher level of symptoms. 

These data are however inconclusive 

because they used a selected sample in 

which one sibling was an ADHD proband, 

so that a simple association with ADHD 

diagnosis would predict the pattern of 

findings they observed (i. e. the sibling 

who did not have ADHD would be 

expected to have lower numbers of risk 

alleles). On the other hand they did find 

evidence for the QTL association by 

regressing ADHD symptom scores onto the 

number of DAT1 risk alleles (p=0.032 for 

hyperactive-impulsive symptoms; p = 

0.116 for inattentive symptoms). 

In another study that used a population 

sample of 329 male dizygotic twin pairs 

unselected for phenotype, Mill et al. [116] 

looked for QTL association with several 

ADHD risk-alleles (DAT1, DRD4, DRD5, 

SNAP-25, 5HT1B). Parent rated ADHD-

symptom scores had been gathered at 

ages 2, 3, 4 and 7 years in addition to 

teacher ratings at age 7-years and 

combined in various ways to generate a 

series of composite scores. A major 

advantage of using sibling pairs is that 

family-based association methods can 

compare the between and within pair 

variation of the trait, using correlations of 

the sums and differences of the trait value 

with the sums and differences in the 

number of the postulated a priori 

risk/protective alleles for the two siblings 

in a pair [1]. Using this approach they 

found some evidence for the QTL 

association with the 10-repeat allele (p < 

0.01) and the protective effect of the 

SNAP-25 microsatellite-allele-2 (p < 0.05). 

An interesting observation from these 

data was that the within pair differences 

analyses, which are exempt from 

stratification effects, generally showed the 

highest degree of association, whereas the 

between pair analyses were often 

negative, suggesting that stratification 

effects could be hiding some positive 

effects. In this particular sample the 

stratification were more likely to be 

phenotypic rather than genetic and could 

have resulted from the fact that, at least 

for parent ratings, it is easier to rate one 

child against another within a family than 

compare a child to some pre-calculated 

childhood norm. 

Two additional studies, using 

population samples, compared allele 

frequency differences between individuals 

with high and low scores on continuous 

measures of ADHD symptoms. Although 

one of the studies found a trend in favour 

of the DAT1 association in a small sample 

of 50 high and 42 low scoring individuals 

[137], the other larger study failed to find 

any evidence for the association (Curran 

et al., personal communication). Finally, 

Todd et al. [170] used 100 randomly 

selected families and 413 families in which 

at least one twin passed an initial 

screening interview for ADHD; of these, 

219 had a full DSM-IV diagnosis. Using 

conventional within family tests of 

association to analyse both latent class 

criteria and DSM-IV ADHD subtypes they 

failed to find any significant association or 

trend for association with the 10-repeat 

allele.  

Attempts to replicate the association 

reported with clinical ADHD in population 

samples or using QTL methods have 

therefore failed for most genes and been 
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inconclusive for others, although several 

of the studies described above remain 

relatively underpowered for this type of 

analysis. This raises the possibility that the 

phenotypic measures being used to define 

quantitative ratings of ADHD symptoms in 

general population samples may not 

accurately reflect an underlying 

distribution of genetic liability. One 

example that relates to this issue is the 

use of parent or teacher ratings that 

correlate only to a modest degree, around 

0.3 in most studies. Twin analyses using 

ADHD items from the Conners’ scales 

indicated that only 31% of the variance in 

teacher and parent ratings of ADHD 

symptoms were due to genetic effects 

common to both ratings, whereas 41% of 

the variance in parent ratings and 50% of 

the variance in teacher ratings were due 

to additional genetic effects that were 

unique to each [109]. Therefore the 

ratings by parents and teachers reflect 

only partially overlapping phenotypes and 

genotypes. This finding is further 

supported by the observation that 

performance on cognitive-experimental 

tasks associated with ADHD correlate 

strongly with teacher ratings of ADHD 

symptoms in a general population sample, 

but not parent ratings [83]. Oosterlaan et 

al. [134] also found that only teacher 

ratings of ADHD symptoms predicted 

performance on cognitive tasks that were 

sensitive to ADHD with parent ratings not 

contributing to the association, in this case 

using a clinical sample with research 

diagnoses of pervasive ADHD and control 

children. Whether other types of 

continuous variables, such as cognitive-

experimental endophenotypes, will 

provide a better representation of 

underlying genetic liability and relate 

more strongly to ADHD genetic risk alleles 

is considered in the next section.  

The genetic analysis of cognitive 

endophenotypes  

In addition to molecular analysis of 

behavioural phenotypes there is a growing 

interest in the analysis of cognitive 

endophenotypes [18]. For example, there 

have been several papers reporting on the 

association between the DRD4 repeat 

polymorphism and neurocognitive 

performance in children with ADHD and 

controls. By focusing on tasks that are 

known to be associated with clinical ADHD 

or have theoretical links with the disorder, 

these studies hope to provide direct 

evidence for the influence of genetic 

variation on underlying cognitive 

phenotypes that may mediate the genetic 

risk on the behavioural phenotype.  

Identification of suitable measures for 

this type of approach remains a matter of 

some considerable debate. One approach 

is to use classical family and twin study 

designs to identify cognitive-experimental 

measures that show a familial 

relationship. Family studies, like the 

IMAGE sample that consists of ADHD 

probands plus their unaffected siblings, 

can be supplemented with control data to 

estimate shared familial influences. 

Although this would establish the familial 

link between the two sets of measures 

(behavioural and cognitive-endopheno-

type), it remains feasible that this could 

arise from non-genetic influences acting 

on pairs of siblings. Twin studies that 

adopt multivariate approaches can partial 

the familial influences into shared genetic 

and environmental factors and establish 

more precisely the degree to which shared 

genetic influences are acting on both sets 

of measures. To date there have been only 

a few studies in this area and these have 

been greatly underpowered, so that only 

very tentative conclusions can be drawn at 

this time. 

Kuntsi et al. [84] used a twin design to 

investigate whether the same genes that 

influence ADHD-symptom scores also 

affected performance on tasks that 
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discriminated between ADHD and control 

children. The only variable for which they 

obtained evidence of shared genetic 

effects was the variability in the speed of 

responding on a reaction time task, 

suggesting that a state regulation problem 

could be the psychological process that 

mediates the genetic effects on 

hyperactivity. Another study investigated 

biological and adoptive parents of ADHD 

probands [128]. Biological parents of 

ADHD boys (n=16) were found to have 

slower reaction times to un-cued left 

visual field targets than to right visual field 

targets and slower response to invalidity 

cued targets in the right visual field; a 

finding that they had also observed in 

children with ADHD compared to controls. 

These lateral effects were not observed in 

adoptive parents of ADHD boys (n = 12) or 

biological parents of comparison boys (n = 

14), suggesting a possible link between 

ADHD and abnormal hemispheric 

asymmetry mediated by genetic factors. 

Other family and twin studies of cognitive-

experimental endophenotypes are 

currently underway and these studies 

should provide critical information on 

some of the psychological processes that 

mediate the genetic effects on behaviour. 

The first publication to look directly at 

the influence of ADHD risk alleles on 

cognitive-endophenotypes in relation to 

ADHD, investigated children with ADHD 

grouped on the presence of one or two 

copies of the DRD4 7-repeat allele (n = 13) 

versus absence of the 7-repeat allele (N = 

19) plus a control group (n = 21) [164]. 

Using neuropsychological tests with 

reaction time measures designed to probe 

attentional networks, they found 

surprisingly that although reaction times 

in the 7-repeat absent group were slow 

and variable, the 7-repeat present group 

showed normal speed and accuracy 

compared to controls opposite to primary 

predictions for the study. However, the 

very small sample sizes meant that only a 

cautious conclusion could be made. 

A further study investigating 200 adults 

with ADHD, used a battery of tasks 

designed to measure separately three 

anatomically defined attentional networks 

relating to alerting, orientating and 

executive control, the Attention Network 

Test (ANT). Although robust evidence for 

the strength of genetic influences on the 

measures used is lacking, a pilot study of 

26 MZ and 26 DZ adult twin pairs 

suggested that genetic variation 

contributes to normal individual 

differences in higher order executive 

attention [35]. In the molecular genetic 

analysis, the DRD4 7-repeat allele was 

found to have no influence on the 

measures used. There was however 

modest association with the 4-repeat 

allele and a functional promoter SNP (–

521) with reduced executive efficiency 

[41].A potentially interesting conclusion 

from their analysis was that all the genetic 

alleles they investigated that were 

predicted to lead to higher levels of extra-

synaptic dopamine or dopamine signal 

transduction, showed less efficient 

executive attention scores – this included 

the DAT1 10-repeat allele and functional 

polymorphisms in Monoamine Oxidase A 

(MAOA) and Catecholamine-O-methyl 

transferase (COMT). 

Another study of 178 ADHD probands 

from Israel also failed to find association 

between the DRD4 7-repeat allele and 

cognitive-experimental measures from the 

Test Of Variables of Attention (TOVA). 

However they did report a positive 

association between the 4-repeat allele 

and errors of commission [104].Cognitive 

deficits associated with the 7-repeat allele 

in ADHD probands have however been 

reported by one group. Langley et al. [88] 

recently reported on the investigation of 

133 drug naive children with ADHD aged 

6–13 years using several tests known to be 
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associated with attention, impulse control 

and response inhibition; the continuous 

performance task, matching familiar 

figures test, go/no go task and stop task. 

In contrast to the findings from the earlier 

two studies, they found that DRD4 7-

repeat was positively associated with an 

inaccurate and impulsive style of 

responding, as well as increased activity 

levels measured by actigraphs that is not 

explained by ADHD symptom severity. 

Although interesting, some discrepancies 

remain to be explained. For example, on 

the go/no go task the ADHD 7-repeat 

group had particularly slow mean reaction 

times, whereas on the stop task the same 

group was particularly fast compared to 

both the ADHD non-7-repeat group and 

controls.  

There have also been a few studies 

investigating correlations between the 

DAT1 10-repeat allele and neurocognitive 

performance. As described above the 

study of Fossella et al. [41] found only 

minor effects with modestly lower 

executive function scores for the rare 9/9 

homozygous genotype compared to the 

pooled score for the more common 9/10 

and 10/10 genotype group. In another 

study from the United States significant 

association was reported between the 

10/10 genotype and poor performance on 

a sustained attention [96]. This finding 

was not however supported in a study of 

44 children with ADHD from Korea using 

the TOVA where the 10-repeat allele was 

associated with less commission errors 

and had no effects on response time and 

variability [131]. In another study [96] the 

authors reported that within their sample 

of ADHD probands the 10/10 genotype 

was associated with the combined 

subtype of ADHD and an increase in 

neuronal activity in response to treatment 

with methylphenidate, measured by the 

ratio of theta to beta waves on 

electroencephalography (EEG). This last 

finding may reflect differing neuronal 

activation states consistent with the state 

regulation model, described above. 

Whether these various studies can be 

reconciled remains unclear. The first set of 

studies suggests that the DRD4 7-repeat 

allele is not associated with a loss of 

attentional efficiency but may be 

associated with other dimensions that 

underlie the development of ADHD. On 

the other hand the findings from Langley 

et al. appear to contradict this and are 

more consistent with the reported 

association between ADHD and the DRD4 

7-repeat allele, their main a priori 

hypothesis. Similar discrepancies appear 

for the DAT1 VNTR polymorphism. One 

message is that extreme caution must be 

introduced in the interpretation of these 

data. The odds of true association need to 

be adjusted in some way to take into 

account the prior probability of 

association, which will be lower for 

associations that are not consistent with 

prior hypotheses based on theoretical 

considerations. A second important 

message is that the use of endophenotype 

measures will not necessarily be the 

phenotypic panacea that some 

investigators hope for. While it is 

pertinent to search for the cognitive 

mechanisms that underlie ADHD, we 

cannot be certain that cognitive 

experimental measures will necessarily 

provide an improved way to find the 

genes involved; by parsing clinical and 

genetic heterogeneity into more 

homogenous compartments with larger, 

more easily detectable, gene effects or 

providing more accurate measures of 

underlying genetic liability. 

One issue that needs to be addressed is 

the reliability and consistency of different 

neurocognitive measures both within and 

between studies. For example many 

groups use slightly different formats and 

protocols for similar tasks and reliability is 

not always formally tested. Factors such as 
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the sensitivity of measures to rewards and 

the presentation rate of stimuli need to be 

considered when making comparisons 

between different studies. A more 

interesting theoretical issue is whether 

single or multiple independent genetic 

pathways can explain the various 

associations between performance on 

cognitive-experimental measures and 

ADHD. Although independent neural 

networks and cognitive processes that 

relate to different aspects of task 

performance can be identified, these are 

often correlated within general population 

samples. Furthermore, genetic influences 

can combine together to influence several 

different neuronal networks and cognitive 

processes. For this reason we might 

expect there to be only one or a few 

common genetic pathways that influence 

a range of correlated cognitive outcomes. 

This type of common pathway model is 

similar to that proposed for “g”, the most 

heritable phenotype for general cognitive 

ability derived from factor analysis of 

multiple aspects of cognition [141]. 

Although this model has yet to be formally 

tested in ADHD, it remains feasible and 

would imply that the best phenotype to 

map the genes involved would be derived 

by combining multiple correlated cognitive 

measures together, reducing the effects of 

measurement error and forming a 

heritable multivariate index. Such a 

composite index would be predicted to be 

more strongly associated with specific 

gene variants than any single test alone. 

Following a similar line of argument, it 

may be the multivariate nature of the 

ADHD behavioural phenotype that has led 

to the relative success in identifying ADHD 

associated genes to date. 

Model fitting approaches using family 

and twin studies can help to unravel the 

various processes involved by examining 

the genetic and environmental 

contributions to covariance between 

behavioural ratings and experimental task 

variables, as well as estimating the level of 

shared genetic influences between 

different cognitive experimental 

measures. Multivariate analyses can be 

used to compare multiple independent 

versus single common pathway models to 

investigate the extent to which the 

different cognitive experimental measures 

can be used alone or in combination to 

provide one or more heritable common 

factors. The extension of DF analysis to 

examine the association of group 

membership, for example DSM-IV ADHD 

combined type, to cognitive performance 

in co-siblings can also be used to 

investigate whether there are shared 

familial/genetic influences on both the 

clinical group and task performance. In 

combination with molecular genetic data, 

these types of approaches can provide an 

empirical basis for the use of 

endophenotypes in the search for ADHD 

susceptibility genes, as well as providing a 

functional understanding of specific 

genetic variants.  

Gene-environment interaction 

Despite considerable progress in 

discovering genetic risk factors for ADHD, 

even the strongest associations have not 

been ubiquitously replicated and definitive 

‘ADHD genes’ have yet to be discovered. 

As discussed above, this problem is usually 

explained by concluding that psychiatric 

disorders such as ADHD are caused by a 

large number of genes, each with a very 

small effect size. To routinely detect such 

small effects, it is argued, extremely large 

samples will be needed. Another 

possibility, however, comes from the fact 

that the heritability coefficient indexes not 

only the direct effects of genes but also 

the effects of interactions between genes 

and environments, where genes confer 

sensitivity or susceptibility to specific risk 

environments [141, 149]. Gene x 

environment interaction (G x E) may 

provide one possible explanation for the 
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discrepancies seen between clinical and 

population studies where clinical ADHD 

samples have been much more successful 

in detecting associations than population-

based samples [116]. It is possible, for 

example, that specific environmental 

factors that are over-represented in 

clinical samples may play an important 

role via gene-environment interactions.  

The importance of gene-environment 

interactions in behavioural disorders has 

been highlighted by two recent studies 

using the Dunedin Multidisciplinary Health 

and Development Study, where functional 

polymorphisms in candidate genes have 

been shown to have an effect only in 

groups subjected to specific 

environmental stressors. The first study 

describing MAOA as a moderating 

influence on the effects of maltreatment 

on antisocial behaviour [15, 141] and the 

second describing the serotonin 

transporter gene (5-HTT) as a moderator 

of stressful life events on depression [16]. 

Importantly, neither of the two genes 

investigated showed main effects with the 

behavioural phenotypes, so that the 

genetic associations would have been 

missed entirely if the environmental risk 

factors had not been taken into account. 

Similar types of interactions are likely to 

be relevant to the development of ADHD 

and may be particularly useful for 

prediction of high-risk groups and 

targeting of therapeutic interventions. 

To date there have been few G x E 

studies in relation to ADHD. A recent 

example, however, was the report of 161 

children followed from the age of 6 

months up to 5-years of age. Child 

hyperactivity-impulsivity and oppositional 

behaviour was found to be associated 

with the DAT1 10-repeat allele, but only 

when the child was also exposed to 

maternal prenatal smoking [75]. Further 

studies in this area are needed with the 

focus on environmental risks already 

known to be associated with ADHD 

including low birth weight, in utero 

alcohol and nicotine exposure and 

expressed emotion [158, 167]. More 

sophisticated genetic designs will be 

required to unravel the direct influences 

of identified risk factors from passive 

environmental correlations: For example, 

distinguishing the toxic effects of smoking 

during pregnancy, from the association 

between maternal smoking, maternal 

ADHD and shared genes between mother 

and offspring. 

Concluding remarks 

ADHD is a complex disorder and we 

must adopt research strategies that can 

best embrace such complexity. It will be 

important to draw various approaches and 

experimental paradigms together. The 

functional genomic approach to ADHD 

means that gene function is understood at 

various levels of analysis, not only at the 

level of molecular and cellular function 

but also at the level of psychological 

processes, neuronal networks, environ-

mental interactions and behavioural 

outcomes. Human studies will need to be 

complemented by animal models of ADHD 

and more sophisticated animal 

behavioural paradigms that better reflect 

the human condition need to be 

developed, especially in mouse which is 

the main functional genomic tool. The 

investigation of cognitive endophenotypes 

will be central to this process as it is likely 

to identify genetically determined 

cognitive experimental measures that can 

be more easily modelled in animal 

behaviour. Neuroscience will increasingly 

focus on the use of genetically modified 

animals to investigate the effects of 

genetic variation and environmental 

interaction on the development of 

behaviour. Experimental protocols are 

currently being established that will 

enable us to investigate both molecular 

and behavioural expression of genetic 
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constructs in vivo, so that we can follow 

these processes throughout development. 

Taken together these multiple approaches 

hold the promise of developing a far more 

detailed knowledge of the developmental 

origins of ADHD with increased benefits 

for future generations. 
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