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Introduction: 

A consideration of how unusual function 

of the monoaminergic transmitters can 

contribute to the clinical picture of 

childhood attention-deficit/hyperactivity 

disorder (AD/HD) involves an understanding 

of 3 concepts: What are the main features 

of AD/HD, how does normal brain anatomy 

and function develop, and how do the 

monoaminergic pathways interact. With this 

context one is equipped to look at the 

evidence for unusual monoamine activity 

and interactions in contributing to the 

problems found in children with AD/HD. 

 This chapter proposes a way to integrate 

the features that these concepts have in 

common. The first part is concerned with a 

description of how childhood AD/HD 

appears in the clinic, at home or at school. 

This picture then acquires structure with 

specific features defined by laboratory 

testing.  To understand what might be “dis-

ordered” supposes knowledge of the 

organization in normal brain structure and 

in particular, how the organization of 

stimulus and response develops in the child 

and the adolescent. Important here is that 

much of the functional order is orchestrated 

by the monoamines. The third part sketches 

out where and how the long axon 

monoaminergic pathways reach out across 

brain structures and exert (normally) an 

adaptive modulation of function under 

changing circumstances. Further details are 

provided in other chapters.  

I shall emphasize childhood AD/HD with 

modest reference to its manifestation in 

adults: I shall concentrate on the main three 

monoamines (dopamine, DA; noradrenaline, 

NA and serotonin, 5-HT) with but minor 

reference to adrenaline. Nonetheless this 

material has implications for the origin and 

course of AD/HD outside the early 

developmental period. Further, it will 

become apparent that the full 

consequences of changed monoamine 

activity can only be fully appraised within 

the context of the interactions with other 

amine- (e.g., acetylcholine) and amino-acid 

transmitters (e.g., GABA and Glutamate). 

AD/HD – a clinical picture 

The diagnosis of AD/HD usually concerns 

young people between the ages of 7 and 18 

years. The manual of the American 

Psychiatric Association [APA: DSM-IV (1)] 

needs the presence of 6/9 features for the 

inattentive type, a separate 6/9 features for 

the type with hyperactivity and impulsivity, 

or both for the more usual combined type. 

The decision is based on longer structured 

or semi-structured interviews that ask 60-80 

questions (or more) from two informants 

(usually a parent and a teacher) in order to 

show that the reported problems can occur 

independently of the situation. These 

features, impairing the function of the child, 

must have been present before the 7
th

 

birthday. 

The health professional will get an image 

of motor restlessness (chair rotation, 

alternately sit or stand, move from toy to 

toy/task-to-task, fidgeting). Fine motor 

control can appear clumsy. Movement is 

often led by impulsivity. From observation 

alone it is often difficult to distinguish 

impulsiveness driven by a distracter, 

changing desires/motivations or an inability 

to withhold prepotent tendencies. 

Concentration is difficult unless the 

situation is novel. Social abilities are poorly 

developed (e.g., few friends, interruption of 

discourse), self-esteem is often low and the 

ability to organize or plan deficient. The 

latter can incur poor judgment and risk-

taking. Changes in the quality of motivation-

al features (e.g., the need to drink, assess 

reinforcement), stress- and emotional 
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control (e.g. temper tantrums) often 

complete the clinical picture [review (2)]. 

AD/HD – neuropsychological features 

It must be emphasized that there is no 

function - typical of normal child 

development - that is completely absent in 

those with AD/HD. Lesions are not 

implicated. The patient is sometimes 

‘normal’: but the problems persist in 

different contexts. A child appearing for an 

MR- or electrophysiological investigation 

can appear remarkably ‘cool’, for the time 

being. There have been innumerable 

disagreements over what constitutes a 

classical or ‘core’ phenotype. Of course, a 

way out is to define sub-groups by one or by 

another feature (e.g., referrals vs. non-

referrals (3), inattentive vs. hyperactive-

combined subtypes (4), with/without 

different comorbid disorders (5), 

internalisers [fearful anxious types]/ 

externalisers [fearless impulsive types, (6)], 

more or fewer than 7-repeats on the 

dopamine D4 receptor gene (7), those with 

high theta/low beta EEG ratios vs. those 

with high beta EEG power (8), medication 

responders/non-responders (9, 10) and 

more. It is ironic that the feature with the 

most widespread applicability appears to be 

that of intra-individual variability (11) – 

where it is the variance of response time 

that is usually considered. 

Yet it is possible that the difficulties of 

AD/HD children can be both differentiated 

and reduced to a few conventional fields of 

ability. Thus, variance in the speed of 

performance relates to motor abilities in 

general, - in the sense of neuromuscular 

development (12), but also to poorly 

controlled supplemental motor activity and 

physiological state control (13). Similarly the 

variance in accuracy can be explained by 

inattentiveness (12), in the sense that 

distracters can delay (14), focused attention 

/non-target detection is slow (15), and 

indeed signal-detection indices of 

perceptual sensitivity (e.g., d-prime) are low 

(16, 17). The errors that so often result do 

not incur the usual slowing of the next 

response, - implying the impaired process-

ing of feedback and contingent executive 

control (18, 19). There are two major 

processes here, - the top-down control of 

information processing, and the short-term 

sensitivity to reinforcement. If these are 

abnormal, one consequence is that children 

with AD/HD often express an aversion to 

delays in event-rates. In other words there 

are two separate features [dual pathway, 

(20)]: executive dysfunction and delay 

aversion make significant, independent 

contributions to predictions of AD/HD 

symptoms. 

A number, if not all, of these features of 

AD/HD could be summarised under the 

rubric of a ”disorder of  impulsivity”(7). 

There is some truth in this. The term 

‘impulsivity’ has 3 components, - acting on 

the spur of the moment (motor), not 

focusing on the task in hand (attentional), 

and not planning ahead [executive: (21)] 

that can all lead to ill-considered action. But 

it would be wise when attributing unusual 

neurochemistry to non-adaptive function to 

separate the control systems for cognitive 

and behavioural impulsivity (22). The 

alternative to lumping is to split the disorder 

into numerous sub-types. This will always 

have some explanatory value for specific 

features, but it is worth considering, for 

example, the experience of Nigg and 

colleagues (23). They examined executive 

function, motor abilities and flexibility of 

cognitive set, and found that the similarities 

between diagnostically inattentive and 

combined subgroups were much more 

striking than the differences [cf. also (24)]. 

Unusual brain functions in children with 
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AD/HD are associated with inattention 

(perception and selection), poor controlled-

(executive)-decision processing (conflict 

management), non-adaptive evaluation of 

reinforcement contingencies and situation-

ally inappropriate motor activity. These 

impairments are reflected in each of the 

successive stages of information processing 

that are so clearly and precisely represented 

by scalp electrophysiological records (event-

related potentials, ERPs) in the first half 

second after an event: Stimulus-elicited 

cortical excitation [N1 reduced, (25)], 

interference control [P2 larger, (26)], 

stimulus categorization [N2 reduced, (27)], 

effortful updating of short-term memories 

(P3 reduced, (28)], assessment of stimulus 

‘targetness’ [processing negativity reduced, 

(29)], assessment of mistakes [error-related 

negativity/Ne/Pe reduced, (30)], and motor 

organization (LRP reduced, (31)].  

Normal brain development 

With an interest in AD/HD in mind, 

interest in normal anatomical and cognitive 

development centres on the classical peri-

pubertal age for referral (8-14y) with 

curiosity extending to earlier features 

(potentially relating to causality) or how 

matters progress or disappear in young 

adults. 

Myelination, white matter development, 

begins in the second trimester, develops 

linearly from 4 years & continues through 

(and beyond) the third decade. In the 

meanwhile frontal lobe gray-matter 

develops slowly and gradually to 8 years of 

age when prefrontal development (rostral 

to the precentral sulcus) takes off and 

develops rapidly until about 14y. Having 

peaked prior to adolescence, the grey 

matter volume then declines (32). This 

process is attributed to the pruning of 

connections (33), and may start as early as 7 

to 10 years of age in sensory and in frontal 

association cortices, respectively. The 

thickness of the cortex decreases across the 

whole period from 8-20y (34). The 

peripubertal age also sees the rise of 

hemispheric differences (e.g. around the 

inferior frontal sulcus: cf. language 

development on the left). Some of these 

differences are gender specific (35). 

Brain, especially white-matter-volumes, 

increase continually over 3 decades: overall 

increases of volume are found in many parts 

of the frontal, parietal and mid temporal 

(limbic) lobes, while more definite 

decreases occur in the lateral cortices, basal 

ganglia and thalamic nuclei (36-38). These 

studies have shown that maturation 

progresses in waves, rostrally in the frontal 

and laterally in the temporal lobes. 

Interestingly these separate developmental 

axes are reflected in a functional study 

showing the ‘migration’ along these axes of 

the sources of activity underlying the 

detection, registration and response to 

changes of auditory stimulation (39). Such 

maturational processes continue into the 

frontal and temporal poles throughout the 

third decade. Indeed, frontal grey/white 

matter ratios continue to decrease (linearly) 

even beyond that age (40). 

Normal neuropsychological development 

Linear increases in the rate of 

development of postural and sensorimotor 

coordination peak around 6 and 10 years of 

age, respectively. Continued development, 

particularly of the latter, depends 

increasingly on experience and its 

consequences, - described as ‘enhanced 

programming resources’ and online 

feedback processing (41, 42). Tapping in to 

such problems may reflect the core 

problems of AD/HD children in cognition, on 

which this chapter concentrates. Thus, it 

should be borne in mind that motor 

coordination does not become mature until 
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relatively late (in the second decade), 

alongside attentional and executive 

functions (38). In contrast sensory functions, 

orientation and speech-related abilities 

develop earlier in the first decade. 

In late childhood (around 7y ± 1y) 

children make a qualitative leap in their 

cognitive abilities, allowing measures to be 

made of tests that have a qualitative if not a 

quantitative similarity to those used in the 

neuropsychological testing of adolescents 

and adults. In particular they are able to 

orient between cues and master conflicting 

stimuli about as well as older children (43). 

However the speed and accuracy of 

switching attention continues to improve 

with age. 

As would be expected from anatomical 

developments briefly described above, the 

transition of puberty (around 12 ± 1y) 

coincides with the maturation of many 

abilities associated with the function of the 

frontal, or especially the prefrontal lobes. 

These include abstract reasoning, use of 

goals in making plans, inhibitory control, 

verbal fluency, verbal delayed recall, 

novelty-seeking, even finding a degree of 

independence from the family (35, 44). 

But fine grain analyses of development 

have been rare. A series of studies by Luna 

and colleagues (45) on speeds of processing, 

the ability to inhibit voluntary responses 

and working memory use were all based on 

variations of an oculomotor task, thereby 

controlling for the comparison of 

qualitatively different task requirements. 

They reported that adult levels of response 

inhibition were not achieved before the age 

of 14y
1
, independent of speeds of 

                                                           
1
 The emphasis is on adult levels of performance. In 

the preceding peri-pubertal phase children can 

execute such tasks (e.g. Go/no-go) but they recruit 

much larger areas in the frontal lobes (46) and the 

amplitudes of the ERPs show that their categorization 

processing that matured a year later. 

Working memory performance, which 

depended modestly on the other two 

variables considered, did not attain adult 

levels until 19 years of age. 

The development of the stages of 

information processing is illustrated in an 

exemplary way with ERP measures. The 

arrival of sensory information in the 

thalamus and sensory cortices is marked by 

the P1/P50. Maturation to adult levels 

involves a decrease of amplitude and 

latency by about a third between 5 and 15 

years (48). The gating of the ERP response 

to a second stimulus (as marked by P50 in a 

paired click paradigm) is extremely variable 

at puberty (49), and may not achieve adult 

expression until the end of the teens (50). 

The development of excitation elicited by a 

salient stimulus (N1), along with the 

suppression of processing of other stimuli 

(P2) - as a preliminary to its being further 

processed – has been described for subjects 

aged from 5 to 30 y (51, 52). The N1/P2 

adult waveform only becomes evident at 

13-14y of age. The decreases of the latency 

and amplitude characteristics of the peak 

and the dipoles do not mature until after 16 

years. Around puberty the topographic 

distribution of the P50 peaks across the 

scalp move posterior and N1 peaks lose 

their rightward asymmetry However, P2 

peaks do not move rostrally to their central 

adult locations until the end of adolescence. 

The categorization of stimuli (marked by N2) 

and context-updating (marked by P3) attain 

their bilateral frontal and parietal 

topography by around 17 years of age. The 

amplitudes of these components show a 

linear and curvilinear development with 

age, respectively, and mature around 15 

years of age with latency attaining adult 

                                                                                        

of stimuli and evaluation of errors made on these and 

conflict tasks are in general remarkably small (47). 
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levels some 3 years later (53, 54). Indicators 

of automatic selective processes (Mismatch 

negativity, MMN) develop about 3 years 

earlier than controlled attention-related 

processes (Negative-difference, Nd). While 

MMN topography becomes bilaterally 

distributed after puberty, the latency 

reaches adult levels around 17 years, but 

the dipoles continue to migrate along with 

normal frontal and temporal lobe expansion 

through the third decade (39, 51). 

The monoamine pathways 

As their names suggest there are three 

major dopaminergic (DA) innervation 

systems in the forebrain, with their 

mesencephalic origins in the ventral 

tegmental area (VTA) and substantia nigra 

(SN) in the brainstem – the mesocortical, 

mesolimbic and nigro-striatal projections 

(55). The density of mesocortical DA path-

ways in primates increases rostrally across 

the cortices. For example, the increase in 

the rostral auditory association cortices is 

already markedly higher than in the more 

caudal temporal lobe. A moderate then 

higher innervation is found moving from 

somatosensory over motor to prefrontal 

association areas. The axons are especially 

dense in layers I and II and again in V and VI 

(56). DA D1 receptors (dense in I-IIIa, 

moderate in V and VI) are present at one to 

two orders of magnitude more than those 

of the D2-family; but in this D2-family the 

D4 type of receptors are more evident in 

the neocortices (e.g. layer V), and the D2 

types in the limbic and temporal regions. 

Important recipients of mesolimbic innerv-

ation include the entorhinal and cingulate 

cortices (transitional and archicortices), 

parts of the hippocampus and amygdala, 

and the ventral striatum (nucleus 

accumbens and septum). Oades and 

Halliday (55) pointed out that these regions 

are ‘nodes of convergence’ of input from 

very many brain regions and represent 

excellent opportunities for DA activity to 

influence the shifting of the control of their 

efferent output between different afferent 

sources (figure 1).  

The main noradrenergic (NA) projections 

to the limbic and cortical brain regions of 

concern here arise in the locus coeruleus 

(LC) of the pontine brainstem. NA fibres 

project throughout the forebrain, to the 

phylogenetically older archicortices 

(hippocampus and amygdala), the 

neocortical mantle, but also the cerebellum. 

This more dorsal pathway along with a more 

ventral one from the nucleus tractus 

solitarius also innervate several subcortical 

regions including the thalamus and 

hypothalamus (57). Innervation in the 

neocortices increases from layers I-V with 

highest densities in II and IV with greater 

densities of the alpha and beta receptors in 

the more superficial layers (56). Alpha-2a 

sites, prominent in frontal regions, may be 

pre- or post-synaptic in location, while 

alpha-1 sites more often exert effects pre-

synaptically: the former inhibiting, and the 

latter enhancing monoamine release (58).  

Relevant to forebrain function, 5-HT 

projections originate in the median and 

dorsal raphe on the border of the pons 

(containing the LC) and midbrain (containing 

the VTA). There is some overlap between 

the areas innervated, but the dorsal raphe 

projects more anteriorly, to the frontal 

cortices and basal ganglia, and the median 

raphe somewhat more to limbic structures 

and the diencephalon. The sensory and 

motor cortices display a decidedly patchy 

distribution of low and high levels of 

innervation (59). Much of the input arrives 

in layers III and IV (60). Two of the most 

studied 5-HT binding sites in the CNS are the  
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Figure 1 

Nodes for the convergence of afferent fibre input on two mesocortical and two mesolimbic 

DA projection regions (prefrontal and entorhinal cortices, the nucleus accumbens and septum). 

Reproduced from (55) with permission from Elsevier. 

Amygdala (Amyg), Cerebellum (Cb), Cingulate cortex (Cing), Claustrum, Entorhinal cortex, 

Frontal cortex, Hippocampus (Hippo), Hypothalamus (Hypothal), Infero-temporal cortex (Temp), 

Olfactory bulbs (OB), Parietal cortex (Par), Prefrontal Perirhinal, Piriform and Retrosplenial 

cortex, Septum (Sept), Thalamic nuclei (Thal), Tuberculum-olfactorium (Tub-Olf), Ventral 

noradrenergic bundle (VB): Monoaminergic nuclei (A/B 6-10). 

 

5-HT1a and 5-HT2a receptors. The former is 

often characterised as an autoreceptor, and 

the latter postsynaptic, but this is not an 

exclusive compartmentalization (e.g. 5-HT1a 

sites are active postsynaptically on 

cholinergic neurons). Stimulation of either 

site can lead to increased catecholamine 

outflow
2
 (61-64).  

                                                           
2
 This generalization glosses over the variation with 

brain region, receptor sub-type (e.g. 5-HT2c, 5-

Monoamines - development 

DA neurons enter the cortical plate early 

in the second trimester. DA has a trophic 

role at this early stage, whereby 

impairments can have consequences on the 

later thickness and connectivity of the 

cortex (65). From birth to puberty the 

                                                                                        

HT1b), the mechanism (through an effect on release 

or synthesis) and whether the catecholamine neuron is 

in a tonic- or burst-firing state. 
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number of axons can increase 6-fold before 

pruning processes set in. Numbers of DA 

receptors peak in mid-childhood, already 

decreasing well before puberty [D1 earlier 

than D2: (66, 56)]. Across adolescence to 

adulthood the number of D1 sites falls by 

nearly 50% and D2 sites by nearly 60% (67): 

thereafter numbers of D1 sites decrease by 

a few percent per year. The implication that 

the D1/D2 ratio falls with age is notable. In 

studies of rodents the peak for D2 receptors 

seems to be larger in males, and despite the 

ensuing reductions, levels are still higher 

than in females through adolescence (68). 

(The same study also described more D1 

sites in right than left sided subcortical 

regions that lasted from the post-pubertal 

period into adulthood: this is reflected by 

measures of DA and its metabolite DOPAC 

that showed a lower turnover in the left 

hemisphere until inter-hemispheric coupling 

matured in young adulthood (69). Such 

findings are yet to be confirmed for 

humans.) The DA transporter system follows 

a different course, peaking at puberty and 

gradually decreasing right on through to 50 

or 60y of age [postmortem study: (66)]. This 

matches the inverse changes for the 

synthesis of DA (by tyrosine hydroxylase) 

that in non-human primates continues to 

develop right through into adulthood (70). 

The gradual decrease of transport 

mechanisms may accurately reflect 

functional activity, and are directly reflected 

by the gradual decrease of DA turnover 

seen in urinary measures taken between 10 

and 20 years of age (71).         

NA development in the human foetus 

follows but at first lags a little behind that 

for DA in the perinatal period (72, 73); but if 

data from animal studies pertain then it 

soon speeds up and overtakes that for DA 

(74). In studies of primates and other 

animals alpha-2 and alpha-1 types of 

receptor also follow each other in 

developmental waves, with the alpha-2 

ahead at birth. But levels fall off after birth 

as numbers of alpha 1 sites increase. Yet by 

puberty alpha-1 sites are decreasing more 

rapidly than the alpha-2 sites. Transport 

mechanisms are gradually reduced 

following puberty but increase again by the 

end of adolescence [review (59)]. This post-

pubertal decrease followed by an increase 

across the teenage period is reflected in 

urinary indicators of NA turnover (71).  

5-HT development reflects first a 

prenatal neurotrophic role, and second a 

postnatal expansion of neural innervation 

and function. A study of Rhesus monkeys 

from 2 weeks to 10 years of age (70) 

showed that while the development of 

catecholamine-containing appositions on 

cortical pyramidal cells reached half adult 

levels by 6 months of age – 5-HT appositions 

had already attained adult levels by 2 

weeks. Prepubertal development, though 

considerable, appears paradoxically to be 

functionally slower than that for DA, such 

that CSF measures suggest a near doubling 

of the ratio of DA to 5-HT metabolites over 

the prepubertal period [review: (59)]. Post-

mortem tissue (75) and urinary measures 

(71) suggest that rather like the situation 

with NA, 5-HT turnover decreases initially 

post-pubertally, but then rises again at the 

end of the second decade. If studies of 

rodent development are any guide 

considerable lateralised differences are to 

be expected. Neddens and colleagues (76) 

reported a rightward emphasis of fibre 

density in the neocortices and a leftward 

emphasis in the limbic cortices. 

Clearly there remains alot of detail on the 

development of the various features of 

monoamine systems to be described: the 

near absence of knowledge of the relative 

abundance of the different receptor 
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subtypes is striking and only partly 

explained by the fairly recent availability of 

suitable ligands. The results reported in this 

section show that there is no simple way to 

say that the functional activity of one or the 

other monoamine (let alone their 

interactions) is more or less than adult 

levels at a given age. First the baseline of 

adult levels is continually changing with age. 

Secondly it remains unfortunately equivocal 

whether any specific function considered is 

more accurately represented by turnover, 

synthesis rates, transport mechanisms or 

the development of synaptic appositions on 

innervated pyramidal or non-pyramidal 

cells. Each of these features develops at 

different non-linear rates. 

Monoamines interactions pertaining to 

normal cognition 

Brain-damage or insults to the 

monoamine systems alone do not allow 

unequivocal conclusions to be drawn about 

hypo- or hyper-function in the affected 

system. But they do provide some insight 

into the normal situation by seeing in what 

domains there are dysfunctions. Preclinical 

studies [e.g. reviews: (77-79)] suggest that 

damage impairing NA function increases 

distractibility. NA tunes the influences of the 

inputs competing to control the output of 

an NA innervated region. Low to high tonic 

firing rates are associated with inattention 

and low arousal to agitation and stressed 

states. In contrast phasic firing occurs when 

stimulation is relevant, other activity should 

be tuned down (80). Impaired 5-HT function 

is associated with impulsivity, whereby 

decreased function may relate to outbursts 

of aggression, while increases are 

associated with cognitive impulsiveness (81- 

83, 22). By analogy with the role of NA in 

tuning, studies of stimulus control suggest 

that 5-HT very often appears to influence 

transmission by exerting a volume-control 

or gain function (59;84). By contrast, the 

role of (increasing) DA activity has been 

described as one of facilitating the 

likelihood of a switch occurring between 

one of two inputs controlling the output of a 

given brain region (79). Reducing DA 

function thus leads to the slowed switching 

in of a particular cued response (85). This 

can be advantageous in initial learning. In 

contrast, high activity enhances switching as 

in divided attention, or between attentional 

and task sets [e.g. trail making, or 

discrimination reversal: (86, 87)]. While low 

and high levels of DA and NA activity, 

respectively demonstrate the different roles 

of tuning and switching in initial learning 

there are other situations in the control of 

ongoing behaviour when their function can 

appear rather similar as a result of the 

presence of different receptor subtypes
3
.  

There are numerous complications that 

make for difficulties in the interpretation of 

the results of the manipulation of any one 

of the monoamines. I shall mention a few. 

NA neurons have sites that will transport NA 

and DA, and others that can release NA or 

DA (89). This makes it very difficult to 

determine precisely the mechanism by 

which, say, psychostimulants achieve a 

specific cognitive effect. Questions are not 

limited to the role of DA. NA is known not 

only for its high affinity for the alpha-2 and 

low affinity for the alpha-1 binding site, but 

is a relatively good ligand at the DA D4 site 

(90). Interactions between the two 

                                                           
3
 Arnsten (77) provides an example of NA 

involvement in switching between channels of 

activity. Information may be faithfully transmitted 

from the thalamus to the cortex under conditions of 

sufficient NA release to engage α1 and β NA 

receptors. But when low levels of NA are released α2 

receptors are engaged. Then, thalamic neurons enter a 

burst mode which prevents information transfer (88). 

In this way, the varying affinities of NA for α2 vs. α1 

or β NA receptors acts as rather like a ‘switch to alter 

neuronal, and the ensuing behavioural state. 
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catecholamines are also documented. For 

example, NA receptors have even been 

hypothesised to ‘gate’ DA release (91). 

It has long been realised that 5-HT input 

frequently inhibits DA activity: now a better 

understanding of the HT2a binding site has 

shown that this effect must also extend to 

the NA system (64). However, opposite 

effects on catecholamine release are 

attributed to HT1b, HT1d and HT3 binding 

sites. The fact that both alpha-NA and 5-HT1 

sites may be found in pre- and post-synaptic 

locations warns against generalizing about a 

transmitter’s activity being associated with 

one-dimensional changes of any one 

cognitive ability (59). 

AD/HD: (1) Indicators of Monoamine 

Metabolism - theory 

Let us take a ‘top-down’ approach from 

the viewpoint of theories currently 

advanced to explain AD/HD problems. There 

are 2-3 broad explanations that nonetheless 

do not account for all features and 2-3 that 

account for a domain of dysfunction, but 

extension beyond these domains remains 

controversial.  

First there is the dual pathway theory 

(92) and the cognitive energetic model (93). 

The former directly invokes monoaminergic 

involvement and provides the background 

to the rest of this chapter. The latter is 

pitched at the psychological level of state 

regulation with physiological underpinnings, 

but elaborates little on the monoaminergic 

contribution. A related account (13) 

explicitly accounts for a range of AD/HD 

problems (variability and maturation) at the 

level of energy availability in CNS function, 

but only indirectly invokes modulation by 

the monoamines.   

Other theories aim at generalizing from 

specific domains of performance such as 

response inhibition (94, 95)to executive 

function and affect control, and the 

‘dynamic developmental theory’ (96) that 

concentrates on the registration of 

reinforcement and related motivational 

consequences [see also reviews in (5, 97)]. 

All these theories depend on functions 

modulated by DA (prima unter pares). They 

tend to overlook the role of NA and 5-HT, 

but do admit dependence on the 

interactions with excitatory and inhibitory 

transmitters (Glutamate, GABA and 

acetylcholine), without much elaboration.  

Most of these theories also do not pay 

adequate attention to explanations that 

could account for rates of comorbidity, 

maturation lag, impulsivity, stress-

responsivity and sleep-wake patterns, to 

name a few other abnormal features 

associated with the phenomenon of AD/HD. 

AD/HD: (2) Indicators of Monoamine 

Metabolism – a dual pathway 

This theory invokes a role for the 

mesocortical DA system in modulating 

(deficient) dorsal fronto-striatal glutamat-

ergic mediation of some executive 

functions. It also envisages a role for the 

mesolimbic DA system in the anomalously 

functioning reward and motivation-

influencing circuits of the more ventral 

frontal-accumbens glutamatergic system 

(92).  

Mesocortical pathway 

Direct evidence for the involvement of 

the mesocortical pathway is rather recent. 

Neuroimaging evidence from subjects with 

AD/HD suggests less activity in the right 

prefrontal regions and parts of the basal 

ganglia (the caudate nucleus and pallidum) 

during a continuous performance test of 

sustained attention [in children, (98)], but 

also in these areas (inferior frontal) and in 

the cingulate region during stop-signal and 

Go/no-go tests of impaired response 
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inhibition and impulsivity (in adolescents, 

(99-101)]. Indeed, no significant increase 

was found in AD/HD children on 

interference suppression [as exhibited 

during performance of a flanker task: (102)], 

where the activity recorded in normal 

children in the mid- and inferior frontal 

regions correlates with success (103). The 

emphasis on right inferior frontal regions is 

warranted by a detailed study relating the 

location of brain damage to stop-task 

performance in brain-damaged adult 

subjects (104). But we should also note with 

regard to the fMRI studies that blood 

oxygenation (BOLD) signals are low across 

many brain regions, - even in the cingulate 

gyrus during Stroop tasks when 

performance in the interference condition 

was actually unimpaired (105). 

In general MR-anatomical studies of 

AD/HD subjects give little clue as to whether 

any particular region, such as those just 

mentioned, is altered in size or 

development. A small reduction is recorded 

as widespread through the cerebral and 

cerebellar lobes (106). However, grey 

matter reduction in the right prefrontal 

(107) as well as in the caudate regions (108) 

in these studies is noteworthy.  

The prefrontal and cingulate regions 

discussed receive a mesocortical DA 

innervation. But is DA involved? Relevant to 

this point are further studies on the ability 

to switch attentional set. The ability as 

tested by the trail-making test has been 

identified as potentially belonging to the 

core cognitive endophenotype of AD/HD 

(23). In a task where the subject had to map 

words/symbols to response hand under 

changing conditions, switching proved 

especially inefficient for those with brain 

damage to mid- and the already described 

right inferior frontal region (109). Such 

switches have been related to DA activity 

(79), and in accord with expectations 

methylphenidate enhances performance of 

AD/HD children in the stop-task (110) and 

reduces the cost of switching between 

letter/number sets (111, 112). 

As one of the striking features of 

prefrontal blood flow activation during 

cognitive challenge is that these are absent 

or reduced in adolescent and adult subjects 

with AD/HD [fMRI above, also PET studies, 

(113, 114)], it is important to note that 

behavioural responses and brain activity in 

these regions are altered by methyl-

phenidate treatment. However, while 

thalamic or cerebellar activity may increase, 

that in the relevant frontal regions 

decreases (115). This must in part be a 

reflection of the marked increase of 

synaptic DA (and blockade of DA reuptake 

[50% at therapeutic doses]) known to follow 

treatment with methylphenidate in healthy 

subjects (116). In turn such changes have 

been directly and quantitatively linked to 

the interest, motivation and success in 

subjects who completed simple maths tests 

(117). However, two further findings 

provide a clue of how, with care, these 

results should be interpreted. Firstly, in 

cocaine-addicts methylphenidate actually 

increases metabolism in BA11 and BA 25 

(orbitofrontal cortex) regions registering 

salience, motivational and emotional 

reactivity (118). Secondly increases of PET 

metabolic measures were recorded after 

double dosing (119). In both situations 

increases of DA D2 binding are expected, 

and it is binding in the DA D2 family of 

receptors that correlates with metabolism 

across a whole range of frontal cortical 

regions (120). Indeed, the variability of 

biochemical or behavioural response 

depends on the individual baseline for DA 

D2-like binding. 

So one may entertain the hypothesis that 
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the AD/HD deficit may be related to an 

unexpected low or a relatively low level of 

DA binding in the individual, and his or her 

baseline binding status. However, if an 

increased chance of binding is to be 

therapeutic, it should probably reflect the 

rapid on/off (high koff) type (i.e. impulse 

related). The reasoning is first that synthetic 

activity marked by PET studies of DOPA 

decarboxylase are lower in frontal regions 

of adult AD/HD patients (121). [Higher levels 

seen in the midbrain of younger patients 

(122) may reflect the mesolimbic pathway 

(see below).] This would lead to a low 

availability of DA especially when there is 

impulse activity. Secondly, a faster 

clearance of DA (by catechol-o-methyl 

transferase, COMT) is associated with 

improved performance in tests of sustained 

attention and time estimation (123, 124) - 

especially in the inattentive type of AD/HD 

patient. Faster clearance is achieved by 

those with the valine variant of a functional 

polymorphism (Val158Met) of the COMT 

gene than by those with the methionine 

variant. 

Now we should add the complication 

that in the frontal cortices the binding site 

referred to may be the DA D4 site that is the 

more abundant member of the D2-family 

present. The type of rapid binding referred 

to above may well be influenced by the 

number of transmembrane repeated 

elements to be found in the molecular 

structure of the receptor. The D4 gene with 

7 (or 2) repeats may be the form showing 

biased transmission in Occidental and Asian 

samples of AD/HD (125, 126). Currently the 

contrast of groups with or without the 7 

repeats shows relevant but rather minor 

cognitive problems. Those without the 7 

repeats showed more variable responses, 

longer response times and were mildly 

inattentive (7, 127). Those with 7 repeats 

were without problems on a colour-word, 

cued detection or rapid choice reaction time 

task (127), yet more impulsive on a Go/no-

go task (7). A third laboratory has reported 

that homozygotes for the 4 repeat form 

tended to be those with a reduced brain 

volume (128, 129). Our understanding of 

the mechanisms at work here is clearly in a 

process of evolution, but the evidence 

points to important variability in DA D4 

function in AD/HD. 

Cortical NA  

With the, as yet, modest effects noted to 

be associated with several (but not all) 

forms of the D4 binding site, one should 

consider the interaction of the mesocortical 

DA system with other monoamines. The 

intimate interactions of NA with DA 

processes cannot be overlooked. The NA 

transporter (NET) can take up both NA and 

DA (130). Such neurones can also release 

both NA and DA (89, 131). Further NA is a 

high affinity ligand for the DA D4 binding 

site (78, 90). NA receptors may even control 

the cortical release of DA, - for with the 

alpha-1b site knocked out animals showed 

no extracellular release of DA in response to 

amphetamine treatment (91). The role of 

NA must be considered in view of the well 

documented therapeutic effects of the 

newer (atomoxetine), as well as the older 

uptake inhibitors (desipramine, imipr-

amine), the alpha-2 agonists (clonidine, 

guanfacine), let alone the psychostimulants 

methylphenidate and amphetamine that 

affect both catecholamines similarly (132). 

The role of NET in the function of the 

“mesocortical pathway” is prominent in the 

response to methylphenidate, as it is far 

more abundant than the DA transporter 

(133). Indeed some changes in the NET 

genotype (G1287A, NET1) have already 

been reported to be associated with AD/HD 

(134) and in particular the symptoms of 
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hyperactivity and impulsivity (135): [pace 

negative results for other polymorphisms in 

three studies (136-138)]. These symptoms 

are improved  by atomoxetine treatment 

(139). Tantalising but as yet equivocal 

evidence has been reported for associations 

of polymorphisms of the synthetic enzyme 

and alpha-2 receptor sites with inattentive 

symptoms (140-142).  

Effects of NA associated with cognition 

probably occur through one of the 3 forms 

of the alpha-2 receptor located largely 

postsynaptically and with a high affinity for 

NA. [Alpha-1 and beta sites have a lower 

affinity for NA and may come in to action in 

stress situations associated with high levels 

of NA (77)].  In the monkey model infusion 

of guanfacine into the ventrolateral PRF 

strengthened associative learning and 

impulse control (143, 144). In dorso-lateral 

regions an alpha-2 antagonist induced some 

behavioural hyperactivity, more errors of 

commission on sustained attention tasks 

and no-go errors on Go/no-go tasks (77, 

145, 146), reminiscent of the features of 

AD/HD children. These effects are 

consistent with what we know about the 

normal role of NA. The locus coeruleus, the 

pontine nucleus of origin of the cortical NA 

fibres, shows tonic slow firing rates in the 

waking state: the appearance of stimuli 

relevant to the ongoing situation elicits clear 

phasic increases of neuronal firing, thereby 

also suppressing responses to irrelevant 

stimuli (80). This role is consistent with a 

‘tuning’ function for NA activity (79).  

While published descriptions of neuro-

imaging studies relevant to the role of NA in 

AD/HD are still awaited, there are some 

data from electrophysiological studies. The 

sort of AD/HD subject that profits from 

imipramine treatment (that may affect NA 

and 5-HT systems) is one who shows EEG 

characteristics of a maturational lag (147): 

these subjects show a widespread increase 

of theta power – expected to decrease with 

development - but reduced power in the 

beta and alpha bands posteriorly). The theta 

power also tends to normalise following 

methylphenidate treatment, especially over 

right frontal regions (148). Robust clinical 

responders to psychostimulant medication 

show an anterior/posterior ratio of the P300 

ERP amplitude exceeding 0.5: just over half 

of the subjects tested on atomoxetine also 

showed this characteristic (149). In a visual 

or auditory oddball paradigm methylphen-

idate treatment is associated with increase-

ing the small P3a and P3b characteristic of 

unmedicated patients (148, 150, 151). 

Indeed sometimes both latency and the 

amplitude variability across subjects is 

reduced by methylphenidate treatment 

(152). The enhancing effect on P3 (and 

processing negativity) is largely seen with 

target processing, consistent with an NA 

facilitated tuning effect (153, 154). Probably 

reflecting both the NA and DA effects of 

methylphenidate, stimulant treatment also 

normalises early stages of information 

processing (a reduction of the large N1 and 

P2 amplitude, and increases of the size of 

the N2 in Go/no-go tasks: (155, 156). 

Cortical 5-HT 

It is not widely appreciated that changes 

in the 5-HT system may contribute to the 

clinical picture in AD/HD. This view arises 

out of the lack of an effect of the major 

pharmacotherapeutic agents on 5-HT 

activity
4
. Hence there have been few studies 

of direct relevance to this chapter. Genetic, 

                                                           
4
 It is also not widely appreciated that atomoxetine 

binds to the 5-HT transporter with an affinity, very 

approximately, only an order of magnitude less than 

for the NET. For comparison it binds to DAT with an 

affinity three orders of magnitude less, and 

methylphenidate has an affinity for the 5-HT 

transporter well over 4 orders of magnitude less 

(157).  
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biochemical and neuropsychological 

evidence has recently been reviewed (59).  

One must first bear in mind that in brain 

regions where there is a common 

innervation from DA and 5-HT fibres, 5-HT 

activity modulates that of DA. Receptors are 

found on mesocortical DA fibres where 

HT2c sites modulate tonic DA outflow, while 

HT2a sites affect active DA transmission (61, 

158)
5
. Thus it is not surprising that CSF 

measures of the metabolites of both 

monoamines are often inter-correlated, and 

were reported to decrease in AD/HD 

subjects responding to methylphenidate 

treatment (162).  

From a functional point of view shifts of 

attention facilitated by methylphenidate are 

impaired by reducing 5-HT synthesis in 

healthy young adult subjects (163). Let us 

take the example of the cognitive challenge 

of conditioned blocking. Healthy children 

switch out the influence of superfluously 

related stimuli while learning a conditioned 

association (164). This is associated 

positively with levels of DA metabolites 

(HVA) excreted, but negatively in AD/HD 

children experiencing difficulties with 

conditioned blocking. Additionally the 

AD/HD children showed a positive 

association with the removal of 5-HT 

metabolites (5-HIAA). This is consistent with 

the AD/HD children removing high levels of 

5-HIAA and showing low HVA/5-HIAA ratios 

of relative metabolic activity. This result 

contributed to the authors’ suggestion that 

with respect to 5-HT activity AD/HD children 

show hypodopaminergic activity (165). This 

is also consistent with the authors’ report of 

correlations between cognitive impulsivity 

measured on the stop-task and decreasing 

affinity of the 5-HT transporter, that would 

                                                           
5
 The HT2a effects are better documented from the 

mesocortical projection, and the HT2c effect on tonic 

DA outflow from mesolimbic projections (159-161) 

lead to higher levels of 5-HT in the synapse 

and correspondingly more metabolism (22). 

Rubia and colleagues (166) also report fMRI 

evidence from young adults of cognitive 

control by the 5-HT system. Decreased 5-HT 

synthesis induced by an amino acid drink 

related to more left-right hand choice errors 

on a Go/no-go task using arrow-cues. The 

change in 5-HT levels was associated with 

decreased BOLD signal from the inferior and 

orbital frontal cortices, but an increased 

signal in the temporal lobe. (The former 

regions were noted above to be of special 

interest in explaining function in AD/HD.) 

In continuous performance tests, 

perceptual sensitivity (d-prime) falls with an 

increased excretion of 5-HT metabolites 

(16). The relationship of DA to 5-HT activity 

(HVA/5-HIAA) is depressed in some samples 

of AD/HD children (165), although increases 

of this ratio may reflect motor activity (167). 

Let us consider some direct measures of the 

role of 5-HT in the processing of salient 

stimuli in the sensory and association 

cortices.  

The amplitude of the N1 to P2 ERP 

elicited by auditory stimuli can depend on 

their loudness. These two components 

reflect the excitatory response to salient 

stimuli and the allocation of resources for 

further processing. The augmenting 

response reflects 5-HT neurotransmission 

and has been used to predict clinical 

responses to 5-HT agonists in affect 

disorders (168). The slope is decreased 

following 5-HT uptake inhibition (169). 

Although the activity of other transmitters 

(e.g. DA and acetylcholine) can also 

influence responsiveness (169, 170), the P2 

component can be viewed as a marker of 

the role of 5-HT in the interplay with the 

catecholamines in the auditory cortices 

(171). Long ago it was noticed that the 

response of autistic children to fenfluramine 
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Figure 2 

Three ERP studies of AD/HD children showing a P2 component of large amplitude that may 

reflect anomalous serotonergic activity. [The figures are modified after (26, 249, 250) and 

reproduced with the permission of Elsevier, Blackwells and the author, respectively.] 

 

and AD/HD children to methylphenidate 

could be predicted by the augmenting 

response (172, 173). More recently, 

numerous studies describe the frequent 

occurrence of unusually large P2 amplitudes 

in AD/HD children – three are illustrated in 

figure 2. The 5-HT influence may be more 

widespread. 5-HT suppression through 

amino acid drinks increases mismatch 

negativity (that marks the detection of 

deviant stimulation) – so increased activity 

may impair. The impairment of right frontal 

MMN in AD/HD children may reflect this 

(26). The MMN sources known to include 

the right inferior frontal region are also 

those noted in fMRI studies (discussed 

above) to be sensitive to AD/HD impulsivity 

and 5-HT activity (99, 166). One of the other 

sources of mismatch negativity is located in 

the cingulate cortex (174), alongside dipoles 

for the event-related responses recorded 

after error commission. One of these 

components (the Pe) may be reduced in 

AD/HD children (19). Responses to error 

commission are sensitive to the activity of 

the 5-HT transporter. Variations in the 

transcriptional control region of the gene 

(5HTTLPR) come in short and long versions. 

The low activity short variant is associated 

with larger error responses in healthy 

subjects (175) – so that one would predict 

that the long variant may be associated with 
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reduced Pe. Indeed biased transmission of 

the long allele has been reported recently 

for AD/HD (176). Associations of the one or 

the other form with the 7-repeat DA D4 

allele have been related to opposite 

extremes of temperament and anxiety in 

infants (177), and together with those for 5-

HT may represent significant markers for 

AD/HD (178). Lastly, supporting the thesis of 

over-activity in the 5-HT system, reductions 

of the 5-HT metabolite have been noted for 

hyperactive children responding to 

medication (179). 

Against this background, it may be borne 

in mind that there are several mechanisms 

that could mediate the 5-HT/DA interactions 

in AD/HD. Thus, the nature of the 5-HT 

transporter (5-HTTLPR) will affect the 

expression of 5-HT binding sites: for 

example the short allele is associated with a 

lower binding potential of the HT1a site 

(180). Agonism here is associated with 

reducing 5-HT activity that inhibits DA 

release in terminal regions (181). This could 

be one mechanism to combat hyper-

serotonemia. In contrast, agonism at DA D2 

sites has been shown in microdialysis 

investigations directed at the dorsal raphe 

origin of 5-HT projections to increase 5-HT 

release (182, 183). This would suggest 

caution in the exploration of useful DA 

agonists. With regard to ongoing treatment 

with methylphenidate, 5-HT agonism 

(quipazine) in animals can interact to 

enhance the down regulation of the DA 

transporter (184). On the presynaptic 

bouton stimulation of both the D2 

autoreceptor and the DA uptake site can 

change the sequestering by the vesicular 

monoamine transporter (VMAT-2) of 

transmitter be it DA or 5-HT (185, 

186)(figure 3).  

Mesolimbic Pathway (DA) 

Leading animal models agree that the DA 

transporter (DAT) appears both to work 

inefficiently and be over-expressed in the 

mesocortical pathway. By contrast, these 

models disagree on the nature of the 

different situation in the mesolimbic system 

(187). Mesocortical function is dominated 

by the NET control of both DA and NA 

clearance and release, exacerbated by 

disorder in the relatively sparsely 

distributed DAT control. NET is barely 

present in most of the regions modulated by 

the mesolimbic projections, but DAT is 

prominently represented. 

The major targets of the mesolimbic DA 

pathway ascending from the mesencephalic 

VTA are the nucleus accumbens, amygdala 

and the hippocampal complex (55). These 

regions receive topographically distributed 

glutamatergic input from dorsal and orbital 

frontal cortices, and provide feedback via 

GABAergic and glutamatergic pathways over 

several thalamic nuclei.  Unusual activity in 

these constituent circuits modulated by the 

mesolimbic afferents are postulated to 

account for the aversion of many AD/HD 

children to delays. They can wait, but 

usually prefer a small reinforcement over 

waiting for a larger one [reward discounting: 

(92)]. Support for this being a prominent 

determinant of AD/HD behaviour comes 

from many studies (188-191). This 

characteristic is interpreted as an inefficient 

coupling between current responses and 

future rewards. The result is a reduced 

control by future salient events on current 

events – the gradient between the two is 

short and steep (96). 

The difficulty lies not in arguing whether 

there are problems in processing delays and 

discounting rewards in children with AD/HD, 

but in refining our understanding what are 

the components of this phenomenon. For 

example, animals with lesions of the 

amygdala also prefer immediate over later,  
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Figure 3 

A scheme illustrating the synapse of a dopaminergic neuron, with the presynaptic bouton on 

the left at the end of an axon leading from the cell body, and the post-synaptic element on the 

right. The 5 types of DA receptor that may occur post-synaptically are illustrated although they 

would not all be found in the same synapse. The contribution from an astrocyte is symbolised by 

the glial cell below. The synthetic pathway for DA is illustrated pre-synaptically. The points for 

the potential action of medication (methylphenidate) are illustrated as a) the DA transporter on 

the cell body and on the bouton, and b) the vesicle monoamine transporter (VMAT-2) where 

newly synthesised DA is taken up prior to exocytosis in the cleft: [modified after (96) and 

reproduced with the permission of Cambridge University Press] 

 

larger rewards. However damage to the 

input from the orbital frontal cortex has the 

reverse effect (192). This could be described 

as a system that controls ‘impulsivity’ (193). 

Do meso-accumbens DA pathways mediate 

incentive motivation and reward (194) or do 

they (more parsimoniously) enhance a 

switch between circuits influencing the 

processing of more or less salient 

information (195) It should not be 

overlooked that communication about 

reward (via some DA pathways) has much to 

do with its mediation by the orexin / 

hypocretin output from the lateral 

hypothalamus and amygdala (196). 

At the behavioural level there is an 

apparent choice of AD/HD children to 

respond to immediate events over other 

possibilities. How does DA availability affect 

this? The answer here requires an 

understanding of what may be happening at 

the synapse of an AD/HD patient with/ 

without medication (figure 3). Normally in 

the basal ganglia (in contrast to 



 18 

mesocortical regions) the ratios of DA, DAT 

and receptor densities are similar and the 

function of DAT is likely to be a major 

contributor to DA signalling (133). Efficient 

DAT limits the duration of DA induced 

synaptic activity – at low DA levels  it 

stimulates DA release, at higher levels the 

DA D2 autoreceptor attenuates release 

(133). One would presume that 

psychostimulants are efficacious, as the first 

of these two processes is impaired. But this 

need not mean that the DA system is 

hypoactive. The increase could activate the 

D2 autoreceptors to reduce the (over-

)release of DA especially that associated 

with the neural impulse. Indeed 

methylphenidate also reduces the rate of 

spontaneous firing in mesolimbic neurons 

(197). Thus the overall effect of treatment 

could be to increase tonic, but to decrease 

phasic DA release (198). This would seem to 

fit the data from Schultz’s monkeys (194). 

He related a fast phasic component of the 

neural response to reward prediction: this 

may be too strong in AD/HD and should be 

attenuated to allow delayed behavioural 

response. Grace (198) suggested that 

through delayed development the reduced 

cortical glutamatergic input to the 

accumbens would lead to a hypoactive DA 

system. This proposal has been 

incorporated in the dynamic developmental 

model of Sagvolden (96). 

In adult subjects with AD/HD striatal DAT 

binding was reported to be unusually high (a 

SPECT study), and was reduced by nearly 

30% after a month of methylphenidate 

treatment (199). This supports the notion 

(above) that tonic levels of DA would 

increase, as confirmed for normal adults 

(200). Interestingly, in animals, co-

administration of methylphenidate with 

nicotine – there are presynaptic acetyl-

choline receptors on mesolimbic neurons – 

increased DA levels in an additive manner 

(201). This may provide a basis for apparent 

attempts at self-medication through 

cigarette smoking. Important for the 

distinction between the function of tonic 

and phasic activity, and its behavioural 

effect, Volkow’s PET studies in humans 

show that methylphenidate-induced 

increases in DA are associated with an 

enhanced perception of a stimulus as salient 

(202). While such perception is clearly 

relevant for the interest in and motivation 

generated by such stimuli, it relativises the 

emphasis placed on mesolimbic 

reinforcement processes in the direction of 

the attentional mechanisms I have 

emphasised.             

There is evidence for genetic variation in 

the production of more and less efficient 

DAT. The 10-repeat allele for DAT (3' 

variable number tandem repeat 

polymorphic site in 3' region of the gene 

SLC6A3) is reportedly over-active. To obtain 

this beneficial behavioural, attentional and 

biochemical response to methylphenidate it 

is advantageous not to be homozygous for 

the 10/10 repeat allele of DAT (203-208) – 

even though the EEG of homozygotes is 

somewhat normalised after treatment
6
 

(206). Although there is modest reason for 

suggesting a biased transmission of the 

10/10 variant in AD/HD (210, 211), many 

studies do not find this – implying that we 

should be looking for other types of DAT 

variant. 

As suggested above there is evidence for 

the involvement of the ventral striatum, 

thalamus and orbital-frontal cortex in 

discriminating reinforcement contingencies 

(or their saliency) in normal subjects (212) 

                                                           
6
 The opposite effect (increased theta power) on the 

magnetic form of the EEG after methylphenidate 

treatment was reported for a group of ADHD patents 

who had not been genotyped (209) 
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and that the 10/10 allele is associated with 

size reduction of the nearby caudate 

nucleus (128). However, there is sparse 

evidence that methylphenidate is associated 

with changes of the aversion to delays. Yet, 

we have long known that the steep 

reinforcement gradient shown by the 

spontaneously hypertensive rat model of 

AD/HD is improved after methylphenidate 

treatment (213). Immediate reinforcement 

was less effective and responses for delayed 

reinforcement were strengthened. The 

same effect of treatment was reported from 

a study of adults with a history of criminal 

behaviour (214). One presumes that the 

weak signal provided by a cued delay of 

reinforcement is amplified by the drug’s 

effect on DA release. This seems to be 

supported by another PET study of normal 

adults from the Volkow team (215) showing 

that while the sight of food elicited no 

change in the dynamics of DA activity, there 

was a major response if the subjects had 

received a prior dose of methylphenidate. 

However, the apparent support from animal 

work is a bit difficult to reconcile with other 

rodent studies showing that chronic 

treatment in the pre- and peri-adolescent 

period resulted in less interest in natural 

rewards [e.g. sucrose, novelty and sex: 

(216)]. This qualification and the 

interpretation of Volkow’s data would seem 

to put emphasis on the processing of the 

‘signal’ rather than on incentive and 

motivation. 

Mesolimbic Pathway (5-HT) 

The previous section introduced the 

interactions of 5-HT with DA in regions 

innervated by the mesocortical projections. 

Such interactions are relevant in areas 

innervated by the mesolimbic system, and 

do concern the questions about impulsivity, 

of reinforcement mechanisms and 

motivation just addressed. 

In AD/HD children cognitive impulsivity 

measured by a reduced probability of 

inhibition in the stop-task, is associated with 

decreased affinity (increased Kd in platelets) 

of the 5-HT transporter (22): (figure 4)
7
. 

With regard to the reinforcement 

mechanisms, stimulants like amphetamine 

(therapeutic in AD/HD) and cocaine act 

presynaptically on DA transport. Both alter 

5-HT dynamics. Indeed if the DA transporter 

is knocked out in rodents reinforcement 

measured by cocaine administration (217) 

or conditioned place preference to 

amphetamine (218) remains, - until a 5-HT1a 

antagonist is administered. Further, the 

sensitivity to reinforcement administered by 

intracranial self-stimulation to the 

hypothalamus is increased by treating the 

median raphe nucleus with a 5-HT1a agonist 

(219). Interactions between 5-HT and DA 

systems are central to considerations of 

cognitive impulsivity and the associated 

evaluation of reinforcement. 

There is a large body of animal research 

that clearly shows the involvement of 5-HT 

interactions with DA in the mediation of the 

mechanisms underlying the preferred 

choice of AD/HD children for receiving 

immediate rather than delayed rewards. 

Measures taken with a dozen agents 

blocking NA and 5-HT uptake (but not DA 

uptake) show that there is an increased 

efficiency for obtaining water presented on 

a schedule of differential reinforcement at 

low rates of response [DRL: (220, 221)]. A 

similar effect was seen in young adult  

                                                           
7
 Cognitive impulsivity should not be confused with 

the poor control of aggressive responses, often seen in 

ADHD children especially those with comorbid 

conduct disorder. For disruptive behaviour the 

association with the affinity of the transporter was the 
opposite (figure 4), consistent with a large literature 

on the role of 5-HT in aggression (22) 
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Figure 4 

The relationship of the affinity (Kd) of the 5-HT transporter on platelets sampled from 

children with AD/HD with (left) their ability to withhold response if required on the Stop-task 

(stop-signal reaction time SSRT) – the lower the probability of inhibiting a response (i.e., the 

more impulsive) the higher the Kd (lower affinity: Bmax was unrelated). On the right the reverse 

relationship between increasing Kd and more aggressive behaviour is shown. [Modified after (22) 

and reproduced with the permission of Taylor/Francis]. 

 

criminals given paroxetine while performing 

a task where a short delay resulted in a 

small reward, but a longer delay gave more 

reinforcement (222). [It may be noted that 

sub-chronic paroxetine down regulates pre- 

and post-synaptic 5-HT1a sites in normal 

young adults (223)]. In confirmation, 

enhancing activity at the HT1a sites in 

animals leads to problems with delaying 

response for reinforcement (224, 225). 

Enhancing activity at HT1b sites attenuates 

the effects of psychostimulants like 

amphetamine in decreasing impulsivity and 

promoting responses to targets (226), while 

HT2 antagonism may also lead to impulsive 

responding (227). Comparison between 

animals bred for high or low sensitivity to 5-

HT1a stimulation showed the latter with 

high response rates, and low reward rates 

on a DRL schedule (228): these effects were 
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improved with reuptake inhibitors. Reduced 

5-HT activity promoted the selection of the 

delayed but larger reward (229, 230). 

Recently thinking (and experiment) about 

these mechanisms led to the suggestion 

that while DA systems should be active 

during behavioural decisions requiring effort 

and concerning delay, 5-HT systems were 

needed for the latter (231). 

Thus, overall, there is reason to believe 

that 5-HT plays a marked role in the 

sensory, reinforcement, inhibitory and 

motor processes that are disturbed in 

AD/HD. At least in relation to 5-HT activity, 

the DA system seems to be hypoactive. 

The status of peripheral and central 

nervous monoamine systems: 

Measures of the elimination of 

monoamine metabolites are indirect 

indicators of transmitter activity. It is 

difficult to identify the sources of these 

metabolites. But it is of both basic and 

clinical interest that there is some broad 

support for the relative activities between 

the monoamines, and some associations for 

these ratios with measures of symptoms or 

cognitive activity in young subjects with or 

without AD/HD. 

 NA metabolism: 

Levels of the metabolite MHPG (3-

methoxy-4-hydroxyphenyl glycol), possibly 

an indicator of resting NA metabolism, are 

reported to be unusually low in AD/HD in 

8/13 studies (59). Raised levels of other 

metabolites such as NMN (normeta-

nephrine) have been reported, possibly 

reflecting increased sympathetic activity 

(17, 179), as associated with the stress of a 

cognitive task (17, 232). Sub-chronic 

treatment with methylphenidate often 

results in further decreases of MHPG in 

peripheral catchments (233-238) that 

correlate with improvements in symptom 

ratings (237, 239). Speculatively, this may 

reflect a reduction of NA overflow resulting 

in the better control of DA/5HT interactions 

via the high affinity alpha-2 than the alpha-1 

site that is more closely related to activity in 

stressful situations. 

 DA metabolism: 

Pharmacological blocking of peripheral 

catecholamine breakdown shows that 15-

20% of HVA may have a central origin. As a 

group levels are reported as normal, 

sometimes a bit low in CSF (240), plasma 

(241) and urine (235, 242). Psychostimulant 

treatment tends to lower HVA excretion (in 

urine, plasma and CSF), if not quite to the 

same extent as the effect on MHPG (179, 

233, 242, 243). Shekim et al., (235, 236) 

reported a rate-dependent effect with high 

levels being lowered and low levels raised. 

Down-regulation has been reported to 

relate to decreases of symptoms, more 

especially for measures of hyperactivity 

than of attention (162, 240, 241, 244). 

Together these data suggest that in 

comparison with NA metabolism the DA 

system is relatively hyperactive (165), even 

if some indicators suggest that DA metabolic 

activity is lower than normal. For example, 

Konrad (17) reported that impulsive errors 

of commission on a CPT-ax task related to 

rates of eye-blinking, and hence indirectly 

DA activity. Further, signal detection 

measures on a test of sustained attention 

(CPTax) were inversely related to HVA in 

normal children: no such relationship was 

found in age-matched children with AD/HD 

(16). 

 5-HT metabolism: 

A markedly lower ratio of DA to 5-HT 

metabolites (HVA/5-HIAA) reported in 

AD/HD subjects would be consistent with 

slightly lower DA and higher 5-HT 

metabolism (165). But this result has not 

been supported in all samples (167, 245). 
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However, the increased 5-HIAA levels 

reported were shown to correlate closely 

and inversely with two quite separate 

measures of attentional ability, namely 

conditioned blocking and sensitivity (d-

prime) on the CPT-ax task (16, 164). These 

results along with those for the stop-task 

(see figure 3) are consistent with an over-

availability of 5-HT in the synapses of 

children with AD/HD. 

Could there be a simple explanation for 

the proposed relatively hyper-serotonergic 

(vs. DA) situation? Uzbekov (179) proposed 

one possibility. His laboratory found that 

while stimulant treatment (sydnocarb) 

reduced the high levels of 5-HIAA, N-

methyl-nicotinamide (N-mna) levels rose. N-

mna is the end product of the alternative 

metabolic pathway for the 5-HT precursor L-

tryptophan. One may entertain the 

possibility that over activity of the 

indoleamine was pharmacologically diverted 

to an alternative metabolic route. This 

would be consistent with a psychostimulant 

induced reduction of 5-HT levels (246). The 

hypothesis is open to test. 

Conclusions: 

The diagnostic manuals maintain that 

AD/HD incurs differentially a broad range of 

cognitive (inattention), motor (hyperactive) 

and impulsive (response inhibition) 

problems. The core of this was described 

some 50 years ago (247). The bases for 

these and related problems lie along a 

cerebellar – pontine/mesencephalic – 

cerebro-cortical axis [cf. pathophysiological 

findings, (248)]. Recent experimental and 

pharmacological work points to a large 

contribution from the monoaminergic 

pathways originating in the mid/hind brain 

to the dysfunctions in the target areas 

innervated by dopamine (DA), 

noradrenaline (NA) and serotonin (5-HT). A 

significant proportion of these 

(dys)functions can be attributed to 

executive processes, the evaluation of 

stimuli and the reinforcement potentially 

associated with these events. Monoamine 

activity is discussed within the context of a 

dual-pathway theory of AD/HD function 

(92). In this context mesocortical 

contributions to neuropsychological 

performance are described here for NA 

(with respect to DA) and mesolimbic 

contributions to reinforcement-related 

processes are described for 5-HT (with 

respect to DA). To divide the roles of the 

pathways in this way is useful but does tend 

to over simplify. Thus, different forms of 

impulsivity depend on mesolimbic and on 

mesocortical interactions. To summarise in 

terms of DA activity being proportionately 

higher than that for NA or lower than that 

for 5-HT has a degree of validity but is a 

generalization masking some of the details 

of the mechanisms involved. The realisation 

of cognitive process in the form of adaptive 

behaviour necessarily incurs additional local 

GABAergic feedback, glutamatergic cortico-

striatal integration and moderation by 

cholinergic input. 
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