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Intelligence is a highly heritable trait for which it has proven

difficult to identify the actual genes. In the past decade, five

whole-genome linkage scans have suggested genomic regions

important to human intelligence; however, so far none of the

responsible genes or variants in those regions have been identi-

fied. Apart from these regions, a handful of candidate genes have

been identified, althoughmost of these are in need of replication.

The recent growth in publicly available data sets that contain

both whole genome association data and a wealth of phenotypic

data, serves as an excellent resource for fine mapping and

candidate gene replication. We used the publicly available data

of 947 families participating in the International Multi-Centre

ADHD Genetics (IMAGE) study to conduct an in silico fine

mapping study of previously associated genomic locations, and

to attempt replication of previously reported candidate genes for

intelligence. Although this sample was ascertained for attention

deficit/hyperactivity disorder (ADHD), intelligence quotient

(IQ) scores were distributed normally. We tested 667 single

nucleotidepolymorphisms (SNPs)within 15previously reported

candidate genes for intelligence and 29451 SNPs in five genomic

loci previously identified through whole genome linkage

and association analyses. Significant SNPs were tested in four

independent samples (4,357 subjects), one ascertained for

ADHD, and three population-based samples. Associations

between intelligence and SNPs in the ATXN1 and TRIM31

genes and in three genomic locations showed replicated

association, but only in the samples ascertained for ADHD,

suggesting that these genetic variants become particularly

relevant to IQ on the background of a psychiatric disorder.

� 2010 Wiley-Liss, Inc.
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INTRODUCTION

Intelligence is a highly heritable complex trait, for which it is

hypothesized that many genes of small effect size contribute to its

variability [McClearn et al., 1997; Plomin, 1999]. Almost a decade

after the completion of a rough draft of the human genome

sequence, major efforts have been undertaken to identify common

variations related to inter-individual differences in intelligence.

Plomin and coworkers [Plomin, 1999; Plomin et al., 2001, 2004;

Butcher et al., 2005, 2008] conducted several genome wide associa-

tion (GWA) studies and showed significant association of a
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functional polymorphism inALDH5A1 (aldehyde dehydrogenase 5

family) (MIM: 610045) on chromosome 6p with intelligence.

Whole genome linkage scans for intelligence [Posthuma et al.,

2005; Buyske et al., 2006; Dick et al., 2006; Luciano et al., 2006]

reported two areas of genome-wide significant linkage for general

intelligence on the long arm of chromosome 2 (2q24.1-31.1) and

the short arm of chromosome 6 (6p25-21.2), and several areas of

suggestive linkage (4p, 7q, 14q, 20p, 21p), following Lander and

Kruglyak guidelines [1995]. The region on chromosome 6 (6p25-

21.2) overlaps with the locus (6p24.1) identified in the genome-

wide association study performed by Butcher et al. [2008]. Con-

verging evidence from these whole genome studies provides sup-

port for the involvement of six different chromosomal regions,

2q24.1-31.1, 2q31.3, 6p25-21.2, 7q32.1, 14q11.2-12, and 16p13.3,

in human intelligence (see Table I).

Apart from whole genome searches, several candidate gene-

based association analyses have also reported significant associa-

tions with human intelligence [for a review see Posthuma and de

Geus, 2006]. Basedon a literature search,we identified 16 genes that

have been associated with intelligence, as measured with an intelli-

gence quotient test (IQ) at least once (P-value �0.05); DTNBP1

(dystrobrevin-binding protein 1) (MIM: 607145), ALDH5A1

(aldehyde dehydrogenase 5 family, member A1) (MIM: 610045),

IGF2R (insulin-like growth factor 2 receptor) (MIM: 147280),

CHRM2 (cholinergic muscarinic receptor 2) (MIM: 118493),

BDNF (brain-derived neurotrophic factor) (MIM: 113505), CTSD

(cathepsin D) (MIM: 116840), DRD2 (dopamine receptor

D2) (MIM: 126450), KL (klotho) (MIM: 604824), APOE

(apolipoprotein E) (MIM: 107741), SNAP25 (synaptosomal-asso-

ciated protein, 25 kDa) (MIM: 600322),PRNP (prionprotein (p27-

30)) (MIM: 176640), CBS (cystathionine-beta-synthase) (MIM:

236200), COMT (catechol-O-methyltransferase) (MIM: 116790),

DNAJC13 (DnaJ (Hsp40)) (GeneID: 23317), FADS3 (fatty acid

desaturase 3) (MIM: 606150), and TBC1D7 (TBC1 domain family,

member 7) (GeneID: 51256) (see Table II).

Oneof themajorhurdles in identifying genes for complex traits is

the need for replication to distinguish false positives from genuine

associations. Of all reported genetic association studies in the

literature, only 4% have shown replicable association according

to a 2002 search [Hirschhorn et al., 2002]. At present, searching for

‘‘genetic’’ and ‘‘association’’ in PubMed gives 69950 hits (June

2010), while adding the keywords ‘‘replicated’’ or ‘‘validated’’

results in 1,318 studies. In other words, in this rough scan around

2.0% of the total reported genetic associations are reports of

validated genetic association. The field of intelligence shows no

exception. Of the 16 genes mentioned above, only three (CHRM2

[Comings et al., 2003; Gosso et al., 2006b, 2007; Dick et al., 2007],

SNAP25 [Gosso et al., 2006a, 2008b], and BDNF [Tsai et al., 2004;

Harris et al., 2006]) have shown replicated association with intelli-

gence across independent samples. Several other genes (e.g.,

COMT, DTNBP1) have repeatedly shown association to a range

of cognitive traits, but have not been replicated for association with

intelligence as measured with an IQ test [Small et al., 2004; Savitz

et al., 2006]. The reasons for lack of replication are many and

include different ethnicity, insufficient sample size, different phe-

notype, opposite effect direction, or the fact that no replication was

attempted at all.

The recent growth in publicly available data sets that contain

whole genome association data as well as a wealth of phenotypic

data serves as an excellent resource for rapid replication efforts. In

the public domain, the Genetic Association Information Network

(GAIN)—International Multi-Centre ADHD Genetics (IMAGE)

sample is the sole GWA sample with information on IQ scores. In

the current article, we use data from the IMAGE project, to (a)

attempt replication of previous association findings for the 16 genes

associatedwithnormal intelligence at least once, and (b) explore the

six chromosome regions previously implicated in human intelli-

gence.Associations found in the IMAGEsample (discovery sample)

are subsequently attempted for replication in four independent

samples. Of these four samples one is ascertained for attention

deficit/hyperactivity disorder (ADHD)—as is the IMAGE

sample—and three are population-based samples. This allows to

investigate whether associated single nucleotide polymorphisms

(SNPs) found with the IMAGE sample are discovered due to an

association with intelligence in an ADHD population, or are more

generally associated with intelligence.

MATERIALS AND METHODS

Primary Sample
Subjects of the IMAGE project have been described in detail

elsewhere [Brookes et al., 2006; Kuntsi et al., 2006; Neale et al.,

TABLE I. Summary of Genomic Loci Previously Associated With Intelligence

Locus Refs. Previous population
2q24.1-31.1 Posthuma et al. [2005] Study¼ 1, population¼ 1 and 2, N¼ 950

Luciano et al. [2006] Study¼ 1, population¼ 1 and 2, N¼ 836
2q31.3 Butcher et al. [2008] Study¼ 1, population¼ 3, N¼ 3,195
6p25-21.2 Posthuma et al. [2005] Study¼ 1, population¼ 1 and 2, N¼ 950

Luciano et al. [2006] Study¼ 1, population¼ 1 and 2, N¼ 836
7q32.1 Butcher et al. [2008] Study¼ 1, population¼ 3, N¼ 3,195
14q11.2-12 Buyske et al. [2006] Study¼ 2, population¼ 1, N¼ 1,115
16p13.3 Butcher et al. [2008] Study¼ 1, population¼ 3, N¼ 3,195

Study 1 is a family study, 2 is the COGA (Collaborative Studies on Genetics of Alcoholism) family study. Population 1 is from the Netherlands, 2 is from Australia, 3 is from the United Kingdom.
N indicates sample size.
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2008]. Briefly, 947 European Caucasian nuclear families (2,844

individuals) from eight countries (Belgium, England, Germany,

Holland, Ireland, Israel, Spain, and Switzerland) were included in

the analysis. Families had been recruited based on having one child

withADHDandanotherwhowouldprovideDNAandquantitative

trait data. In addition, both parents had to be available for DNA

sampling.

IQ scores were available for 606 unrelated probands (for which

we also had genotyping data, see below), of which 554 were males,

with amean age of 10.99 (SD 2.74). IQwasmeasuredwith theWISC-

III-R(Wechsler Intelligence Scales for children) [Wechsler, 1991]or

the WAIS-III-R (Wechsler Adult Intelligence Scale) [Wechsler,

1997] when appropriate (for children aged 17 and older).

The Verbal subtests Vocabulary and Similarities, and the

Performance subtests Picture Completion and Block Design from

theWISC were used to obtain an estimate of a child’s IQ (prorated

followingprocedures described by Sattler [1992]). Age-appropriate

national populationnormswere available for each participating site

included in the IMAGE sample and these were used to derive

standardized estimates of intelligence [Sonuga-Barke et al., 2008].

StandardizedFull-Scale IQ (FSIQ) scores had amedianof 101.6 and

amean of 100.7 (SD 15.7). Skewness of the distribution of IQ scores

was 0.063 while kurtosis was �0.075. The Shapiro–Wilk test was

non-significant (P¼ 0.517) suggesting that the distributionof IQ in

the IMAGE sample did not deviate form a normal distribution (see

Fig. 1).

The parents of the probands filled out the Conner’s question-

naire, which provides a quantitative measure of ADHD symptoms.

Correlations between the symptom scores on the Conner’s

Questionnaire and IQ were�0.066 (P¼ 0.074.) for the total score,

�0.029 (P¼ 0.442), for the inattention score, and �0.084

(P¼ 0.024) for the hyperactivity/impulsivity score. Although this

sample was originally ascertained for ADHD, and ADHD and IQ

have been reported to be associated [Frazier et al., 2004], these

findings suggest that in this sample IQ scores are normally distrib-

uted (aswouldbe expected inapopulation-based sample) andare at

most very weakly related to ADHD symptom scores. As there were

mean fluctuations across collection sites, we calculated Z-scores

within each site/country. The use of Z-scores ensures that there are

no mean IQ differences left across subpopulations in the IMAGE

sample and therefore rules out spurious associations due to the

known subpopulation structure.

Genotyping—Primary Sample
The IMAGE study was genotyped as part of the GAIN initiative, a

public–private partnership of the FNIH (Foundation for the

National Institutes of Health, Inc.) that currently involves NIH,

Pfizer, Affymetrix, Perlegen Sciences, Abbott, and the Eli and the

Edythe Broad Institute of MIT and Harvard University (http://

www.fnih.org). Genotyping was conducted at Perlegen Sciences

using their genotyping platform, which comprises approximately

600,000 tagging SNPs designed to be in high linkage disequilibrium

with untyped SNPs for the HapMap populations. Genotype data

were cleaned by NCBI (The National Center for Biotechnology

Information). Quality control analyses were processed using the

GAIN QA/QC Software Package (version 0.7.4) developed by

Gon‚calo Abecasis and Shyam Gopalakrishnan at the University of

Michigan. Details of the genotyping and data cleaning process for

the IMAGE study (study accession phs000016.v1.p1) have been

reported elsewhere [Neale et al., 2008].

Briefly, we selected only SNPs with a minor allele frequency

(MAF) �0.05 and Hardy–Weinberg equilibrium (HWE)

(P� 1� 10�6). Genotypes causingMendelian inconsistencies were

identified by PLINK and removed (http://pngu.mgh.harvard.edu/

purcell/plink/) [Purcell et al., 2007]. We additionally removed

SNPs that failed the quality control metrics for the other two GAIN

Perlegen studies (i.e., Major Depression Disorder [dbGAP study

accession, phs000020.v1.p1) andPsoriasis (dbGAPstudyaccession,

phs000019.v1.p1), see Neale et al., 2008]. With this filtering,

384,401 SNPs were retained in the final data set. One genomic

intelligence locus (7q32.1) could not be included in the analysis

because all 10 SNPs inside this relatively small area failed the quality

control. The APOE was also not included as no SNPs were geno-

typed in or near this gene. Fifteen genes (ALDH5A1, BDNF, CBS,

CHRM2, COMT, CTSD, DNAJC13, DRD2, DTNBP1, FADS3,

IGF2R,KLOTHO,PRNP, SNAP25, andTBC1D7) and five genomic

areas (2q24.1-31.1, 2q31.3, 6p25-21.2, 14q11.2-12, and 6p13.3)

were thus included in the association analysis. From the cleaned

data set, we selected all genotyped SNPs that lie in these candidate

genes and genomic loci including 10 kb both upstream and down-

stream of each gene or genomic locus.

Imputation
To increase coverage in the targeted genomic areas, we used the

imputation approach implemented in MACH [Li et al., 2006],

which imputes genotypes of SNPs that are not directly genotyped in

the data set, but that are present on a reference panel. MACH is a

FIG. 1. Density plot for IQ scores in the IMAGE sample.
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Markov Chain-based haplotyper, which obtains an imputation of

each unknown genotype using short stretches of DNA that are

shared among unrelated individuals. The reference panel used was

HapMap III phased data in MACH input format, which is publicly

available for download from the MACH website (http://

www.sph.umich.edu/csg/abecasis/MaCH/download/).

Genomic coverage of the candidate regions was extended to

�1.5MbcommonSNPsby imputationusing theHapMapphase III

CEU data (NCBI build 36 (UCSC hg18)) as the reference sample.

Imputed SNPs were selected if r2 was above 0.3 with the reference

allele. Additionally, a quality threshold of 0.90 for imputation was

set to be included in further association testing.

Gene coverage was determined by the sum of the typed and

imputed SNPs as well as the tagged SNPs (based on HapMap

information) divided by the total known common SNPs (again

based on HapMap information) within a gene, using WGAviewer

[Ge et al., 2008]. On average, after imputation, gene coverage was

85% in the candidate genes, with 100% coverage for DNAJC13,

TBC1D7, DTNBP1, ALDH5A1, BDNF, and CTSD. In total, we

analyzed 672 SNPs in the candidate genes and 29451 SNPs in the

genomic loci.

Genetic Association Analysis in IMAGE
We carried out association testing using an additive linear regres-

sion model implemented in PLINK for genotyped markers, and in

MACH2QTL [Li et al., 2009], for imputed SNPs, taking into

account dosage information. All IQ scores were precorrected for

sex and age and no other covariates were included in the model. As

mentioned above, Z-scores were calculated within each of the

different sites included in IMAGE, such that there were no mean

differences in IQ between sites. Analyses included only SNPs with a

minimum 80% genotyping rate and individuals with <20% of

missing genotype data. SNPs in candidate genes that had a nominal

P-value <0.05, and the top five SNPs from the genomic regions,

were selected for testing in the four replication samples.

Replication Samples
Four replication samples totaling 4,357 independent subjects

were available for replication of top findings of the IMAGE sample.

One sample was ascertained for ADHD, and three samples were

population-based samples.

DUKE cohort. The DUKE cohort consisted of 216 Americans

from 108 families with a DSM-IV diagnosed ADHD-affected

proband [Kollins et al., 2008]. Families were enrolled from two

collection sites:DukeUniversityMedical Center,Durham,NC, and

University of North Carolina, Greensboro, NC. All participating

family members provided written informed consent that had been

approved by the institutional review board at the ascertaining

institution. TheWAIS-III was administered to individuals 17 years

of age or older, and the WISC-IV was given to children ages 6–16.
The Wechsler Preschool and Primary Scale of Intelligence—3rd

edition (WPPSI-III) was used for children under the age of

6 [Wechsler, 2002]. FSIQ was estimated for both adults and

children from the vocabulary and block design subtests (M¼ 109.5

109.5 and SD¼ 12.9). Parents and children were genotyped using

the Illumina InfiniumHumanHap300duo chip (Illumina, Inc., San

Diego, CA). Quality of the Illumina data was assessed using PLINK

(http://pngu.mgh.harvard.edu/purcell/plink/) [Purcell et al. 2007].

SNPs (315,980) were submitted for quality checks. Call rates

exceeded 98% for all individuals, one individual was excluded due

to a gender discrepancy, and two individuals were excluded due to

per-family Mendelian errors in excess of 1%. Out of the 315,980

SNPs submitted, 6,109 SNPswere excluded based on aMAF<0.05,

13 SNPs were excluded due to Mendelian errors in >4 families,

and 629 SNPs were excluded due to deviations from HWE

(P< 0.000001). In total, 3 individuals and 6,751 SNPs did not pass

our quality control checks. Two Centre d’Etude du Polymorphism

Humain (CEPH) controls and blinded duplicates were used for

every 94 samples and required to match 100%. Data were genome-

wide imputed with the use of the phased data from the HapMap

samples (CEU; build 36, release 22) and MACH. Association

analysis was carried out using QTDT (http://www.sph.umich.

edu/csg/abecasis/QTDT/). QTDT adopts the between/within

model as used by Fulker et al. [1999] and Purcell et al. [2007] as

implemented in the QFAM package. We tested for population

stratification by comparing the between and within family com-

ponents of association, using a variant of the orthogonal model

[Abecasis et al., 2000]. None of the tested SNPs showed sign of

stratification in this population.

ALSPAC sample. The Avon Longitudinal Study of Parents and

Children (ALSPAC) is a large population-based, prospective birth

cohort consisting initially of over 13,000 women and their children

recruited from theBristol area,UK in the early 1990s [Golding et al.,

2001]. ALSPAC has extensive data collections on health and

development of children and their parents from the 8th gestational

week onwards. Ethical approval for the study was obtained from

the ALSPAC Law and Ethics Committee and the local research

ethics committees. FSIQ within ALSPAC was measured at the age

of 8 with the WISC-III [Wechsler et al., 1992]. A short version

of the test consisting of alternate items only (except the coding

task) was applied by trained psychologists [Joinson et al., 2007].

Verbal (Information, Similarities, Arithmetic, Vocabulary, and

Comprehension) and Performance (Picture Completion, Coding,

Picture arrangement, Block Design, and Object assembly) subtests

were administered; the subtests were scaled and scores for FSIQ

derived. ALSPAC (1,543) children were initially genotyped at

317,504 SNPs on the Illumina HumanHap317K SNP chip. Indi-

viduals exhibiting cryptic relatedness, non-European ancestry, high

genome-wideheterozygosity, and/ormissing rateswere excluded as

described in Timpson et al. [2009], leaving 1,518 individuals in the

analysis of whom 1,495 had information on FSIQ within a range of

�4 SD (M¼ 106.8, SD¼ 15.6). Markers with MAF <1%, SNPs

with>5%missing genotypes andmarkers that failed an exact test of

HWE (P< 5� 10�6) were excluded from further analyses leaving

310,505 SNPs that passed quality control. GWAS analysis was

performed on sex and population stratification-adjusted (first five

principal components from Eigenstrat analysis) [Price et al., 2006]

Z-standardized IQ scores. Genome-wide imputation was done

using the HapMap phase I-II CEU data (release 22, NCBI build

36) as the reference sample and MACH software.

QIMR adolescent (Brisbane Adolescent Twin and Family)

sample. The QIMR adolescent cohort is a population-based
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cohort, consisting of 1,670 Australians (793male, 877 female) from

741 familieswithmean age of 16.4 (SD¼ 4). FSIQwas assessedwith

theMultidimensional Aptitude Battery [MAB; Jackson, 1984]. Five

subtests were administered (three Verbal: Information, Arithmetic,

Vocabulary; two Performance: Spatial, Object Assembly) and from

these a standardized FSIQmeasure was obtained. FSIQ had amean

of 112.6 (SD¼ 12.8).Genotypingwasdoneusing the Illumina610K

SNP platform and Illumina BeadStudio software, with 529,721

SNPspassingQC.Datawere imputed to�2.3millionSNPswith the

use of the phased data from the HapMap samples (CEU; build 36,

release 22) and MACH.9, described in detail in Medland et al.

[2009], (see Project 5: ADOL deCODE). Individual SNPs were

tested for association with the family-based score test implemented

in Merlin. This study was approved by the QIMR human research

ethics committee and informed written consent was obtained from

all participants.

Lothian Birth Cohort 1936 (LBC1936) sample. The LBC1936

consisted of 1,091 individuals who, at the age of �11 years,

participated in the Scottish Mental Survey of 1947, when they took

a validated mental ability test, the Moray House Test No. 12

(MHT). Briefly, at a mean age of 69.6 years (SD¼ 0.8) participants

of LBC1936 were recruited to a study to investigate the causes of

cognitive ageing.Theyunderwent a series of cognitive, physical, and

biochemical tests at the Wellcome Trust Clinical Research Facility

(WTCRF) at the Western General Hospital, Edinburgh. For this

study, a general cognitive ability factor was derived from principal

components analysis of sixWechsler Adult Intelligence Scale-IIIUK

(WAIS-III) subtests (matrix reasoning, letter number sequencing,

block design, symbol search, digit span backwards, and digit

symbol), as described previously [Luciano et al., 2009]. The general

cognitive ability factor scoreswere corrected for age in days and sex,

and converted to IQ scores (mean¼ 100; SD¼ 15). DNA was

isolated by standard procedure at the WTCRF Genetics Core,

Western General Hospital, Edinburgh from 1,071 individuals.

Twenty-nine samples failed quality control preceding the genotyp-

ing procedure. The remaining 1,042 samples (all blood-extracted)

were genotyped at theWTCRFGeneticsCoreusing the Illumina610

-Quadv1 chip. These samples were then subjected to the following

quality control procedures after which 1,005 samples remained. All

individuals were checked for disagreement between genetic and

reported gender (n¼ 12). Relatedness between subjects was inves-

tigated and, for any related pair of individuals, one was removed

(n¼ 8). Samples with a call rate�0.95 (n¼ 16), and those showing

evidence of non-Caucasian ascent by multidimensional scaling,

were also removed (n¼ 1). SNPs were included in the analyses if

theymet the following conditions: call rate�0.98,MAF�0.01, and

HWE test withP� 0.001. The final number of SNPs included in the

genome-wide association study was 549,091. IQ scores and geno-

type were available for 976 individuals. Genomic coverage was

extended to �2.5 million common SNPs by imputation using

the HapMap phase II CEU data (NCBI build 36 (UCSC hg18)) as

the reference sample and MACH software. SNPs with low im-

putation (r2< 0.30), lowMAF (<0.01), and divergence fromHWE

(P< 0.001) were excluded so that respective SNP and sample call

rates were 0.98 and 0.95.

Statistical power. The primary (IMAGE) sample of 606 sub-

jects had sufficient (80%) statistical power to detect SNPs that

explained at least 1.3% of the variance for direct replication

(significance level 0.05) (Genetic Power Calculator) [Purcell et al.,

2003], which is in the order of effect sizes of SNPs reported

previously. The sample size of the meta-analysis including the two

ADHD samples (606þ 216¼ 822) was sufficient to detect genetic

effects explaining 2% of the variance, given a Bonferroni corrected

significance level of 0.001. The sample size including all samples

(N¼ 4,963) was sufficient to detect SNPs explaining 0.35%

(i.e., <1%) of the variance (significance level of 0.001).

Replication analysis. All populations were imputed using

MACH and imputed SNPs were included in our analysis if quality

score> 0.9 and r2> 0.3 and MAF> 0.05. IQ scores were all cor-

rected for effects of age and sex and transformed to Z-scores and

standardized such that the mean was 100 and SD¼ 15, within each

sample, for comparison of effect sizes across samples.

Meta-analysis. Although replication across different samples

provides information on the genuineness of an initial association,

meta-analysis appropriately weighs the effect and sample sizes

across different replications samples. We thus conducted a meta-

analysis, in which the primary sample was included to increase

statistical power [Skol et al., 2006].We used a stepwise approach, in

which we first ran a combined analysis based on the two samples

ascertained for ADHD, and then conducted a meta-analysis on all

4,963 subjects. Themeta-analysis was conducted using theMETAL

program (http://www.sph.umich.edu/csg/abecasis/metal/). MET-

AL creates a single summary P-value for each SNP from all samples

together. For each marker, an arbitrary reference allele is selected

and aZ-statistic, characterizing the evidence for association, is used

as input. The Z-statistic summarizes the magnitude and the direc-

tion of an effect relative to the reference allele. An overall Z-statistic

and P-value are then calculated from the weighted average of the

individual statistics. Weights are proportional to the square root of

the number of individuals examined in each sample, and selected

such that the squared weights sum to 1.0. Outcomes of the meta-

analyses were tested against a Bonferroni corrected threshold of

significance (P< 0.001).

RESULTS

Primary Sample—IMAGE Cohort
Most previously reported associations of genes with intelligence

included intronic SNPs with no clear function. This suggests that

they might be controlling RNA signaling networks or that other

SNPs in LDmight be the actual causal variant.We used imputation

to increase coverage. We do note; however, that even after imputa-

tion, not all of the originally reported SNPs were available in the

current sample. Of the 15 candidate genes, six genes showed at least

one SNP with a P-value <0.05 (see Table III).

Of the five previously reported genomic loci (2q24.1-31.1,

2q31.3, 6p25-21.2, 14q11.2-12, and 16p13) investigated here, we

observed P-values <0.0025 in three regions (6p25-21.2, 2q24.1-

31.1, and 14q11.2-12) (see Table IV). Genomic areas 2q31.3 and

16p13.3 showed no association with IQ (all P-values >0.15). On a

SNP level, there were three independent SNPs in intergenic and

non-coding regions with P-values �2.0� 10�4 inside the 2q24.1-

31.1 and 14q11.2-12 areas (Table IV). The lowest P-values were
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observed for rs2807822, P¼ 1� 10�4; rs4972741, P¼ 1.7� 10�4;

and rs6721348 P¼ 1.8� 10�4.

To confirm whether the nominally significant SNPs (P< 0.05)

from the candidate genes and the top SNPs (P< 0.0025) in each of

the genomic regions with IQ were simply due to chance, we tested

these SNPs in the replication samples.

Replication of Primary Associations in Candidate
Genes and Genomic Areas
We attempted replication in four independent cohorts. We first

performed an association analysis of the 17 nominally associated

SNPs (P-value <0.05) in the candidate genes, and the 22

most strongly associated SNPs in the genomic areas in each

population (total of 39 SNPs), using the same reference allele for

each SNP across different populations. TheMAF of the tested SNPs

across the five samples were comparable (see Supplementary

Table S1).

We first conducted a combined analysis on only the two samples

ascertained for ADHD. We then combined all five samples to test

whether the significant SNPs were associated with intelligence in a

general context, or merely in an ADHD background. Although IQ

was normally distributed in both samples ascertained for ADHD,

association of a SNP with IQ in an ADHD background may differ

from association of that SNP with intelligence in a non-ADHD

background.

When combining the two samples ascertained for ADHD we

found that of all tested SNPs, 12 had a P-value <0.05 (same

direction of effect) of which 6 showed evidence for associated after

Bonferroni correction (P< 0.001) for multiple testing. For one of

these SNPs (rs2807822, intergenic, 14q11.2-12), however, the effect

was in opposite direction in the two samples ascertained forADHD,

also indicated by a significant heterogeneity effect (P¼ 0.04; see

Supplementary Table S2). Three other SNPs were in intergenic

areas 6p25-21.2 (one SNP) and 14q11.2-12 (two SNPs), while two

SNPs were in genic areas: rs17606174 (P¼ 0.00018), located in the

second intron ofATXN1 (ataxin 1) (MIM: 601556), and rs2023472

(P¼ 0.0003), located in exon 5 on TRIM31 (tripartite motif-

containing 31) (MIM: 609316). Allelic effect sizes were in the order

of 3–4 IQ points in the combined DUKE and IMAGE samples.

Whenwe combined all five samples, none of these associationswere

significant, even though some of the SNPs showed similar direction

of effects in some of the replication samples. We provide results in

Table V.

TABLE III. Results of 15 Candidate Genes for Intelligence in the IMAGE Cohort

GENE

Previous
associated
SNP (G/I)a

P-value with
previous
associated

SNP
nSNPs
tested Coverage

SNP
density,
kb/SNP

nSNPs,
P< 0.05

Most
significant
SNP (G/I)a Position Type

Best
P-value

DNAJC13 rs1378810 (I) 0.642 45 1 31.41 0 rs12637073 (I) 133666251 Intronic 0.096
TBC1D7 rs2496143 (I) 0.8568 47 1 9.20 0 rs480122 (G) 13425063 Intronic 0.588
DTNBP1 rs1018381 — 65 1 24.55 5 rs760666 (G) 15589121 Intronic 0.020
ALDH5A1 rs2760118 (I) 0.8328 46 1 13.52 1 rs2760138 (I) 24620816 Intronic 0.047
IGF2R rs3832385 — 88 0.967 18.62 5 rs8191898 (I) 160418955 Intronic 0.018
CHRM2 rs8191992 — 81 0.942 21.10 2 rs6467694 (G) 136197456 Upstream 0.010

rs1378650 (G) 0.8284
rs1424548 (I) 0.3888
rs2350780 (I) 0.9788
rs2350786 (G) 0.6316
rs6948054 (I) 0.322
rs7799047 —
rs324640 —
rs324650 (I) 0.2514
rs2061174 —

BDNF rs6265 (G) 0.1018 29 1 29.86 2 rs12288512 (I) 27704247 Upstream 0.011
CTSD rs17571 (G) 0.2932 6 1 59.01 0 rs3740621 (I) 1728373 Upstream 0.081
FADS3 rs174455 (I) 0.6665 9 0.875 41.54 0 rs174626 (G) 61393633 Downstream 0.050
DRD2 rs2075654 — 57 0.982 15.02 2 rs4630328 (I) 112839419 Intronic 0.047
KL rs9536314 (G) 0.6873 52 0.933 13.39 0 rs17763040 (G) 32543384 Intergenic 0.142
SNAP25 rs362602 (G) 0.2254 71 0.913 0 rs362990 (G) 10224221 Intronic 0.063

rs363039 (I) 0.6062
rs363050 (G) 0.3723

PRNP rs1799990 (G) 0.944 21 0.778 20.63 0 rs6084833 (I) 4620759 Intronic 0.135
CBS rs5742905 — 22 0.675 19.83 0 rs1788490 (I) 43340620 Intergenic 0.189
COMT rs4680 (G) 0.6209 33 0.633 14.62 0 rs9332377 (I) 18335692 Intronic 0.08

Genome build 36.
aG and I indicate genotyped and imputed SNPs, respectively.
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DISCUSSION

This study aimed to replicate association of previously reported

candidate genes for IQ as well as to fine-map previously linked

genomic areas. As available samples differed in ascertainment

method (i.e., ascertained for ADHDor population based) we tested

for SNP associationswith IQ in anADHDbackground and in a non

-ADHD, general population, background.

In the primary analysis, we found weak evidence for the associa-

tion of some of the previously reported genes with IQ: IGF2R (five

SNPs with P-value <0.05), DTNBP1 (five SNPs with P-value

<0.05), ALDHA5A1 (one SNP with P-value <0.05), BDNF (two

SNPs with P-value<0.05), DRD2 (two SNPs with P-value<0.05),

and CHRM2 (two SNPs with P-value �0.03). None of SNPs

previously associated with IQ showed association in the current

study (P-value>0.05). The lack of replication can either indicate a

false positive finding in previous studies, or might be explained by

the ascertainment for ADHD in our primary sample. Although

association between IQ and ADHD in the current sample was not

significant, and IQwas distributed normally in the IMAGE sample,

previous reports [e.g., Kuntsi et al., 2004] do indicate a (genetic)

association between ADHD and IQ.

Results from the primary association analysis in the genomic loci

implicated three intergenic regions (2q24.1-31, 6p25-21.2, and

14q11.2-12). The nominally significant SNPs from the candidate

genes, and the top SNPs from the genomic regions, were included in

a stepwise combined analysis. When we combined the two samples

ascertained for ADHD (totaling 822 subjects), we found that five

SNPs were associated with IQ. None of these SNPs were inside

candidate genes previously implicated, but instead were located in

two genomic areas: 6p25-21.2 and 14q11.2-12. Two of these SNPs

were inside two genes: rs17606174 was in the second intron of the

ATXN1 gene, and rs2023472 in exon 5 onTRIM31. However, when

we combined all samples, none of these SNPs showed a significant

association with intelligence. However, we cannot exclude the

possibility of type I error given the total number of tests performed

within the discovery sample only. These results provide suggestive

evidence that the ATXN1 and TRIM31 genes, and several other

SNPs in areas 6p25-21.2 and 14q11.2-12, are related to IQ, but only

on the background of ADHD.

In the primary IMAGE association results, ATXN1 has 25 SNPs

with P-value <0.05, and most of them are located in the second

intron of ATXN1, nearby an alternative splicing region. ATXN1 is

present in the nucleus of the neurons of the basal ganglia, pons and

cortex, and in both cytoplasm and nucleus of Purkinje cells of the

cerebellum [Servadio et al., 1995]. Expansion of a (CAG)n repeat

in ATXN1 (previous called SCA1 gene) causes spinocerebellar

ataxia-1 (SCA1) in humans (MIM: 164400) [Orr et al., 1993;

TABLE IV. Replication Results in the Genomic Loci Previously Associated With Intelligence in the IMAGE Cohort

SNP (G/I)a
Minor/major

allele MAF Rank P-value Chr Position Type Closest gene
Distance
to gene

Genomic location 2q24.1-31.1 (from 154475832 to 177730691 bp) total SNPs tested¼ 7,819 in 182 genes
rs4972741 (I) G/A 0.12 1 0.00017 2 172823906 Intergenic AC104088.1 �64,355
rs6721348 (I) C/T 0.12 2 0.00018 2 172826755 Intergenic AC104088.1 �61,506
rs10172929 (G) G/T 0.13 3 0.00031 2 164756952 Intergenic AC092684.1 0
rs16844374 (G) C/T 0.15 7 0.00127 2 160394348 Intronic LY75 0
rs10201330 (I) T/C 0.09 4 0.00132 2 177056271 Intergenic AC017048.3 22,948
rs4289149 (G) A/G 0.18 8 0.00150 2 172834736 Intergenic ITGA6 165,264
rs995711 (G) G/T 0.12 5 0.00174 2 164123635 Intergenic FIGN �34,517
rs11896469 (G) C/T 0.44 6 0.00230 2 176388492 Intergenic EXTL2P1 27,369

Genomic location 6p25-21.2 (from 5945435 to 41007859 bp) total SNPs tested¼ 18,651 in 809 genes
rs12204969 (I) C/T 0.12 1 0.00018 6 16802156 Intronic ATXN1 0
rs17606216 (G) C/T 0.12 2 0.00018 6 16796594 Intronic ATXN1 0
rs993600 (G) G/A 0.16 3 0.00027 6 22153623 Within non-coding gene RP1-67M12.1 0
rs2023472 (G) A/G 0.42 4 0.00028 6 30183843 Intergenic TRIM31 5,241
rs6929819 (G) G/A 0.43 5 0.00033 6 33670832 Intergenic C6orf227 1,739
rs195371 (G) G/A 0.23 6 0.00034 6 37412364 Intergenic TBC1 3,464-
rs6929774 (I) T/C 0.42 7 0.00039 6 33670698 Intergenic C6orf227 1,605
rs17606174 (G) T/C 0.13 8 0.00050 6 16795524 Intronic ATXN1 0

Genomic location 14q11.2-12 (from 21269202 to 28322992 bp) total SNPs tested¼ 2,964 in 233 genes
rs2807822 (I) T/C 0.47 1 0.00010 14 27554764 Intergenic AL445384.1 25,600
rs3811222 (I) A/G 0.10 2 0.00066 14 22020854 Intronic TRAC 0
rs762578 (I) T/G 0.11 3 0.00069 14 22020088 Intronic TRAC 0
rs1872159 (G) T/C 0.09 4 0.00080 14 22017743 Intronic TRAC 0
rs7149201 (I) C/T 0.20 5 0.00178 14 23034259 Intergenic NGDN 17,017
rs877726 (G) T/A 0.23 6 0.00230 14 27557719 Intergenic AL445384.1 �28,555

Only SNPs with a P< 0.0025 are shown.
Genome build 36.aG and I indicate genotyped and imputed SNPs, respectively.
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Banfi et al., 1994]. It was also reported thatmice lackingATXN1 are

characterized by decreased exploratory behavior, pronounced

deficits in the spatial version of the Morris water maze test, and

impaired performance on the rotating rod apparatus [Matilla et al.,

1998], pointing to the possible role of ATXN1 in learning and

memory.

In the primary IMAGE association results, TRIM31 has 23 SNPs

withP-value<0.05 andmost of themare located in the50 regionand
in intron 1 of TRIM31. The protein encoded by this gene is a

member of the tripartite motif (TRIM) family. The TRIM motif

includes three zinc-binding domains, a RING, a B-box type 1 and a

B-box type 2, and a coiled-coil region [Meroni and Diez-Roux,

2005]. Othermembers of the TRIM family (TRIM3,MIM: 605493)

were reported to modulate NGF-induced neurite outgrowth in

PC12 cells [El-Husseini and Vincent, 1999].

In summary, we found very little support for genetic variants in

genes that have previously been associated with intelligence. In

addition, this study did provide tentative support for a role of the

ATXN1 and TRIM31 genes in previously associated linkage areas

for intelligence in the context of a psychiatric disorder, that is,

ADHD. This suggests that genetic variants important for IQ in a

non-psychiatric populationmay not necessary overlap with genetic

variants important for IQ in a psychiatric population.
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